

 PHP/MySQL for Beginners

 PHP/MySQL for Beginners

 Mark Lassoff

 [image: LearnToProgram Logo_CMYK.jpg]

 LearnToProgram, Inc.

 Vernon, Connecticut

 LearnToProgram.tv, Incorporated

 27 Hartford Turnpike Suite 206

 Vernon, CT 06066

 contact@learntoprogram.tv

 (860) 840-7090

 ©2014 by LearnToProgram.tv, Incorporated

 ISBN-13: 978-0-9904020-0-8

 ISBN-10: 0-9904020-0-2

 All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of LearnToProgram.tv, Incorporated.

 Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. By following the instructions contained herein, the reader willingly assumes all risks in connection with such instructions. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, exemplary, or other damages resulting in whole or part, from the readers’ use of, or reliance upon, this material.

 Dedication

 Dedicated to those who struggle to end bullying. If you have been bullied, you are beautiful and we love you.

 About the Author:

 Mark Lassoff

 Mark Lassoff’s parents frequently claim that Mark was born to be a programmer. In the mid-eighties when the neighborhood kids were outside playing kickball and throwing snowballs, Mark was hard at work on his Commodore 64 writing games in the BASIC programming language. Computers and programming continued to be a strong interest in college where Mark majored in communication and computer science. Upon completing his college career, Mark worked in the software and web development departments at several large corporations.

 In 2001, on a whim, while his contemporaries were conquering the dot com world, Mark accepted a position training programmers in a technical training center in Austin, Texas. It was there that he fell in love with teaching programming.

 Teaching programming has been Mark’s passion for the last 10 years. Today, Mark is a top technical trainer, traveling the country providing leading courses for software and web developers. Mark’s training clients include the Department of Defense, Lockheed Martin, Discover Card Services, and Kaiser Permanente. In addition to traditional classroom training, Mark releases courses on the web, which have been taken by programming students all over the world.

 He lives near Hartford, Connecticut where he is in the process of redecorating his condominium.

 [image: download icon.png]

 Access the complete lab solutions for this book at:

 https://learntoprogram.tv/pages/book-lab-solutions

 Table of Contents

 [bookmark: toc]Chapter 1: Your First PHP Script

 1.1 Setting up Your Development Environment

 1.2 Understanding PHP Development Workflow

 1.3 Writing your First Script

 1.4 echo(), print() and printf() Commands

 Chapter Quiz

 Chapter Lab Exercise:

 Chapter Lab Solution:

 Code listing: Chapter 1 Lab Solution

 Chapter Summary:

 Chapter 2: Variables

 2.1 Introducing Variables

 2.2 Variable Operators

 Chapter Quiz

 Chapter Lab Exercise:

 Chapter Lab Solution

 Chapter Summary

 Chapter 3: Arrays

 3.1 Simple or Indexed Arrays

 Code Listing: simple_array.php

 3.2 Associative Arrays

 Code Listing: associative_array.php

 3.3 Multidimensional Arrays

 3.4 Super Global Arrays

 Code Listing: sampleForm.html

 Chapter Quiz

 Chapter Lab Exercise:

 Lab Exercise 1- Superglobal Single Data Set

 Lab Exercise 2- Superglobal Multiple Data Set

 Chapter Lab Solution:

 Code Listing: Lab Exercise 1 Solution

 yearOfBirth_prediction.html

 birthYear_calculator.php

 Code Listing: Lab Exercise 2 Solution

 yearOfBirth_prediction.html

 birthYear_calculator.php

 Chapter Summary:

 4: Control Structures - Branching

 4.1 Simple Control Structure—If Statement

 4.2 If-Statement

 4.3 If-else- and if-elseif- Statements

 Code Listing: Solution for conditionals_ifElse.php

 Code Listing: Solution for complexConditionals_2.php

 4.4 Switch Statement

 Code Listing: Solution for switchCaseBreakConditional.php

 Code Listing: Solution for switchCaseBreakConditional_2.php

 4.5 Ternary Operator—Compact If-Else

 Code Listing: Solution for ternaryOperations.php

 Chapter Quiz

 Chapter Lab Exercise:

 Chapter Lab Solution:

 Code Listing: HTML Form

 Code listing: PHP Script

 Code Listing: voters_registration.html

 Code Listing: voters_registration.php

 Chapter Summary:

 Chapter 5: Control Structures - Loops

 5.1 While-Loop

 Code Listing: whileLoops_1.php

 Code Listing: whileLoops_2.php

 Code Listing: whileLoops_3.php

 5.2 Do-While-Loop

 Code Listing: doWhileLoops_1.php

 5.3 For-Loop

 Code Listing: forLoops_1.php

 5.4 Foreach-Loops

 Code Listing: foreachLoops_1.php

 Code listing: Code Listing: foreachLoops_2.php

 Code Listing: foreachLoops_3.php

 Chapter Quiz

 Chapter Lab Exercise:

 Chapter Lab Exercise Solutions:

 Code Listing: Chapter Lab Problem 1 Solution

 chapterLabProb_1.php

 Code Listing: Chapter Lab Problem 2 Solution

 chapterLabProb_2.php

 Code Listing: Chapter Lab Problem 3 Solution

 chapterLabProb_3.html

 Code Listing: Chapter Lab Problem 3 Solution

 chapterLabProb_3.php

 Chapter Summary:

 Chapter 6: Custom PHP Functions

 6.1 Introduction and Overview

 6.2 Calling Functions

 6.3 The Include() and Require() Functions

 Code Listing: include_2.php

 Code Listing: include_3.php

 6.4 Creating a Simple Function

 Code Listing: functionCalls.php

 Code Listing: Updated functionCall.php

 6.5 Function Arguments

 Code Listing: functionArgs.php

 Code Listing: computeDogAge.php

 6.6 The Return Statement

 Code Listing: returnExample1_internal.php

 Code Listing: returnExample2_internal.php

 Chapter Quiz

 Chapter Lab Exercise:

 Chapter Lab Solution:

 Code Listing: tempCalcFunc.php

 Code Listing: chap6Lab1_Sol.php

 Code Listing: tempCalcFunc2.php

 Code Listing: chap6Lab2_Sol.php

 Chapter Summary:

 Chapter 7: Server File I/O

 7.1 Serving Files on the Server

 Code Listing: fileIO_1.php

 Code Listing: Appended fileIO_1.php

 7.2 Reading Files on the Server

 Code Listing: readFile_1.php

 Code Listing: readFile_2.php

 Code Listing: readFile_4.php

 Code Listing: readFile_5.php

 Code Listing: readFile_7.php

 Code Listing: readFile_8.php

 7.3 Append and Delete

 Code Listing: appendFile.php

 Code Listing: viewDeleteFile.php

 7.4 CSV Files

 Code Listing: readCSV.php

 Chapter Quiz

 Chapter Lab Exercise:

 Chapter Lab Solution:

 Code Listing: Chap7LabEx.html

 (2)PHP Script- Data Entered Saved Confirmation Page

 Code Listing: Chap7LabExForm.php

 Code listing: Chap7LabExReadCSV.php

 Chapter Summary:

 Chapter 8: Sending Email with PHP

 8.1 Sending Text Email Using PHP

 Code Listing: simpleE-mail.php

 Code Listing: sendEmailText.php

 8.2 Sending HTML Email

 Code Listing: sendEmailHtml.php

 Chapter Quiz

 Chapter Lab Exercise

 Code Listing: Chapter 8 Lab Exercise Solution.

 chap8Lab.php

 Chapter Summary:

 Chapter 9: Working with the MySQL Database

 9.1 Setting up the Database

 Questions for Review

 9.2 Retrieving a Query from the Database

 Questions for Review

 9.3 Storing Information in the Database

 Questions for Review

 9.4 Deleting and Updating Database Records

 Questions for Review

 Chapter 9 Lab Exercise

 Chapter 9 Lab Solutions

 Chapter 9 Summary

 Chapter 10: Useful PHP Classes and Objects

 10.1 The Date Function

 Complete Code Listing

 Questions for Review

 10.2 Strings in PHP

 Heredoc Code Sample

 Complete Code Listing

 Questions for Review

 10.3 Sessions

 Complete Code Listing

 Questions for Review

 10.4 Cookies

 Complete Code Listing

 Questions for Review

 Chapter 10 Lab Exercise

 Chapter 10 Lab Solutions

 Chapter 10 Summary

 Answer Key:

 LearnToProgram.tv PHP and MySQL for Beginners

 Appendix

Courses Available from LearnToProgram, Inc.

 3D Fundamentals with iOS

 Advanced Javascript Development

 AJAX Development

 Android Development for Beginners

 Become a Certified Web Developer (Level 1)

 Become a Certified Web Developer (Level 2)

 C Programming for Beginners

 C++ for Beginners

 Construct 2 for Beginners

 Creating a PHP Login Script

 CSS Development (with CSS3!)

 Design for Coders

 Famu.os Javascript Framework

 Game Development Fundamentals with Python

 Game Development with Python

 GitHub Fundamentals

 HTML and CSS for Beginners (with HTML5)

 HTML5 Mobile App Development with PhoneGap

 Introduction to Web Development

 iOS Development Code Camp

 iOS Development for Beginners Featuring iOS6/7

 Java Programming for Beginners

 Javascript for Beginners

 Joomla for Beginners

 jQuery for Beginners

 Mobile Game Development with iOS

 Node.js for Beginners

 Objective C for Beginners

 Photoshop for Coders

 PHP & MySQL for Beginners

 Programming for Absolute Beginners

 Project Management with Microsoft Project

 Python for Beginners

 Ruby on Rails for Beginners

 SQL Database for Beginners

 User Experience Design

 Books from LearnToProgram, Inc.

 Create Your Own MP3 Player with HTML5

 CSS Development (with CSS3!)

 Game Development with Python

 HTML and CSS for Beginners

 Javascript for Beginners

 PHP and MySQL for Beginners

 Programming for Absolute Beginners

 Python for Beginners

 SQL Database for Beginners

 Swift Fundamentals: The Language of iOS Development

 [bookmark: _Toc387669560][bookmark: _Toc387669918][bookmark: _Toc387671645][bookmark: _Toc387671987]Chapter 1: Your First PHP Script

 Chapter Objectives:

 • You will be able to define “PHP” and “PHP scripting”.

 • You will be able to identify and install the software development tools needed to create PHP scripts.

 • You will learn how to set up the programming environment needed to work with PHP.

 • You will be able to run your first PHP script.

 [bookmark: _Toc387669561][bookmark: _Toc387669919][bookmark: _Toc387671646][bookmark: _Toc387671988]1.1 Setting up Your Development Environment

 You might think that when learning PHP programming, you would be studying the PHP language in isolation. However, PHP is central to a suite of technologies used to develop PHP-based applications. Describing the technologies in that suite is a good place to begin.

 PHP is a general purpose, open-source, server side scripting language designed for web development. It is used to produce dynamic web pages. It is a web scripting language used to add basic web features to a site. Examples of PHP’s use are creating username and password login screens, checking form details, creating forum pages, picture galleries, surveys and many more. PHP is a powerful language that enables developers to create almost any type of application that they desire.

 Unlike some web languages such as Javascript, PHP is not executed within your web browser but instead on the server—the computer that stores the page and makes it available to browsers on the internet. The server processes a request from a web browser and then returns the requested content—usually in HTML format. This is the reason that PHP is referred to as a “server side language.”

 PHP can be written in both an external document or embedded within the HTML document itself. The PHP code is interpreted by a web server (frequently an Apache server) that has a PHP processor module, which generates the resulting webpage. Other popular languages similar to PHP are ASP, Python, Perl, and Ruby.

 One of the frequent uses of computer languages like PHP is to interface with a database or data source. Frequently, PHP is paired with the MySQL database. We’ll talk about the interaction between PHP and MySQL towards the latter part of this book.

 According to computer history, Rasmus Lerdorf developed the initial PHP specification. The term PHP is said to have evolved from his Personal Home Page project into the open-source scripting language widely used and known today as Hypertext PreProcessor—a result of wide collaborative efforts by a pool of developers. However, it does not follow the original acronym PHP, thus, Pre-Hypertext Processor. The scripting language itself was developed using the C language.

 As Rasmus Lerdorf puts it, PHP is not a new and revolutionary language as it borrows much of its syntax from languages such as C, Perl and Java. PHP is a very focused web design language. It is a language written for web developers.

 PHP is perfectly suited for quickly creating web front-end and back-end systems—database creation and manipulation, direct access protocol for directory servers, simple network management protocol for directory servers or generating non-HTML dynamic content for the web such as images, flash or PDF documents.

 An example of an easy PHP task is pulling up customer information from the database and dynamically generating a professional-looking PDF invoice. (www.computerworld.com, Interview with Rasmus Lerdorf, Feb 4, 2002)

 Many multiplayer online game servers are built using PHP.

 MySQL is a free database management system based on standard SQL, which stands for Structured Query Language. SQL became a standard database language in 1986. It is used for accessing and manipulating databases. The SQL language is fairly consistent from database engine to database engine—meaning that moving from working with one database brand to another is fairly easy.

 MySQL is an open-source relational database management system (RDBMS) that runs on a server that allows or provides multi-user access to several databases simultaneously. The developer of MySQL is Oracle (formerly Sun Microsystems). It was named (according to Wikipedia) after the co-founder Michael Widenius’, daughter, My, which was prefixed to SQL, thus MySQL.

 MySQL is a popular database option for use in web applications. It is also a central component for the different open-source web language stacks, namely Linux, Apache, Perl, Python, etc. But the most common pairing is PHP and MySQL as they both tend to take minimalistic and very direct approaches to solving problems.

 With MySQL you can create relationships between elements in the database so you don’t have to repeat data whenever it is needed again for processing in web applications. MySQL will be discussed thoroughly at the latter part of the course.

 The Apache web server application is available for a wide variety of operating systems. It is an open-source (meaning non-proprietary) http server program developed and maintained under the auspices of the Apache Software Foundation. The application is available for a wide variety of operating systems including UNIX, Solaris, Novell Netware, Mac OS X, Microsoft Windows, OS/2, TPF, and eComStation. It is released under the Apache license. Legend has it that the origin of the name Apache came from the description of the software itself having many software patches—server software running full of patches = a patchy server = APACHE.

 Another application that will be needed to complete the PHP programming environment is phpMyAdmin. It is an application written in the PHP language itself that provides a web-based interface for the administration of MySQL databases.

 phpMyAdmin is a free and open-source tool intended to handle administration of MySQL with the aid of a web browser. It can perform various tasks such as creating, modifying, or deleting databases, tables, fields, or rows; executing MySQL statements or managing users and permissions.

 Preparing Your Toolkit

 To begin creating applications using PHP and MySQL, you will need several applications that will aid you in development.

 The first application needed is a text editor. In the examples in this book, I will be using Active State’s Komodo Edit Freeware version, but other editors may be used as an alternative. Do not use word processors, as they add built in code that will interfere with the compiler.

 You may download Komodo Edit for free and there are versions for Windows, Mac, and even Linux. This is what Komodo Edit looks like when run:

 [image:]

 Figure 1.1: Komodo Edit’s opening screen.

 Komodo Edit comes with several templates for development, which can provide a good starting point.

 Another application you will need is a web server environment. This is not separate computer hardware but a software application that lets your desktop computer act as a server for testing PHP scripts. This way you can test your PHP scripts without actually being online and connected to a live server on the internet. Your computer will be both client and server. For Windows and Linux users, the server software environment to be used is WAMP, while for Macintosh users it will be MAMP.

 WAMP stands for Windows, Apache, MySQL and PHP. Once downloaded, it will put these tools in your tray: local host, phpMyAdmin, Apache, PHP, and MySQL, as shown in the following image:

 [image:]

 Figure 1.2: WampServer’s Main (or Control) Menu which can be activated by clicking on WampServer’s Icon in the Icon Tray of Windows.

 The URL for WAMP installation is: www.wampserver.com

 For the Mac, MAMP is the environment to be set up. It stands for Macintosh, Apache, MySQL, and PHP. Its function is basically the same as the Windows version of the suite.

 If you are working on a Windows machine, to begin setting up your working environment you need to make sure that the latest Visual C++ Service Pack is downloaded and installed for your system. This service pack should be readily available if you have the automatic updates set up on your PC. WAMP will also check if you have the latest version of the Visual C++ Service Pack and it will notify you accordingly.

 You can now download WAMP by visiting www.wampserver.com/en. WAMP is a free server software environment and everything is included in the package—Apache, PHP, MySQL and phpMyAdmin.

 [image: C:\Users\Earl\Documents\PHP My SQL for Beginners\Chapter 1 Envirnoment & First Script PHP MySQL\Image Captures\WAMP homepage.PNG]

 Figure 1.3: WampServer’s Main Page at http://www.wampserver.com/en/.

 You may check out the list of items included in the package–Apache, My SQL PHP and phpMyAdmin—in the download page.

 [image: WAMP suite list.jpg]Figure 1.4: WampServer’s download page also at http://www.wampserver.com/en/.

 Take note of the directory in which you will extract the zip file of WAMP, as you will need to refer to it when you set up your Komodo Edit file path and your local server.

 After extracting the WAMP folder into your local hard disk drive, launch Komodo Edit. Go to the menu bar and choose edit.

 [image:]

 Figure 1.5: The dropdown menu of Komodo Edit’s Edit option.

 Under Edit choose Preferences. Then, under Languages Option, choose PHP.

 If the directory for your PHP.ini is not yet set, do so by going into your WAMP folder and accessing the Apache 2.2.22 bin folder by going through folders in the following order:

 WAMP>>bin>>Apache2.2.22>>bin

 Look for the text file named “PHP”. This is your .ini file. Choose the PHP.ini configuration file and set it in your directory. This is done so that Komodo Edit can recognize PHP in its integrated development environment editor.

 [image:]

 Figure 1.6: Selecting PHP as the language option in Komodo Edit’s “Edit >> Preferences >> Language Option” menu path. In this screenshot, the path to the php.ini file still has to be set.

 [image: select php 2.jpg]

 Figure 1.7: Setting the path to the php.ini file in Komodo Edit.

 Once you have the language preferences set up, PHP is now recognized by Komodo Edit as the integrated development environment (IDE) language set.

 [bookmark: _Toc387669562][bookmark: _Toc387669920][bookmark: _Toc387671647][bookmark: _Toc387671989]1.2 Understanding PHP Development Workflow

 In this section, you will learn about PHP development workflow: how a PHP file is actually created and tested, what process it undergoes, and what happens during each phase of the process.

 When creating PHP code, the first thing you do is launch your WAMP (or MAMP) environment.

 Step 1: If you’re on a PC, you can find the WAMP icon either in the Windows Start Menu or in the Icon Tray at the bottom right side of the screen. If you are using a Mac you will find MAMP installed in your applications folder. Start it as you would start any other application.

 Step 2: When you launch your WAMP program, it automatically activates its server functions which will be indicated by the message “WAMPSERVER – server Online” when you hover your mouse over its icon in the Windows Icon Tray.

 If you see the message “WAMPSERVER – server Offline” then you have to activate the server functions by clicking on the WAMP icon. This will bring up WAMPSERVER’s Start Menu. Then, click on the last option on this menu “Put Online”. This will then bring up WAMPSERVER and if you now hover your mouse over its icon, you should see the message “WAMPSERVER – server Online”. WAMPSERVER is now ready to process your PHP scripts.

 [image:]

 Figure 1.8: Selecting the WAMP icon (the green icon showing a fancy W within a rounded square) in Window’s Icon Tray. WAMP is already up and running as indicated by the message “WAMPSERVER – server Online”.

 [image:]

 Figure 1.9: Launching WampServer from its Start Menu which is obtained by clicking on WampServer’s icon in the Windows icon tray. Since WampServer is already running, the last option on the menu shows “Put Offline”. If WampServer is not yet running, the last option would show “Put Online”. Click this last option to put WampServer online.

 Step 3: To test if your server is really running, open your local browser and in the address or URL bar, type http://localhost. This should bring up a homepage generated by the Apache server.

 [image:]

 Figure 1.10: WampServer’s opening page when you type http://localhost in the address or URL bar of your browser.

 This is what the homepage of the WAMP server generated by Apache looks like. Feel free to browse through the page.

 At this point, you can now start your first PHP script.

 Step 4: Switch to Komodo Edit and open a new HTML5 file.

 [image:]

 Figure 1.11: HTML5 document with a simple structure.

 Step 5: Type the following code. It is the simplest (bare-bones) structure of a HTML5 document:

 <!DOCTYPE html>

 <html>

 <head>

 <title>Hello!</title>

 </head>

 <body>

 <h1>Hi There!</h1>

 </body>

 </html>

 Step 6: Now save your file as hello.html in a special folder called www which is found inside the WAMP folder. Make sure the file extension is .html. (If you’re using a Mac, the path is Applications/MAMP/htdocs.) The www or htdocs folder is where all files that can be accessed through the server are placed.

 [image:]

 Figure 1.12: Save your HTML5 file to the c:\wamp\www folder. Make sure the file extension is .html.

 Step 7: Open any browser of your choice.

 Step 8: Make sure your server is online.

 [image: WAMP Online.jpg]

 Figure 1.13: WampServer’s Start Menu which indicates that WampServer is online by the last option which shows “Put Offline”.

 Step 9: Type localhost/hello.html in the address or URL bar. You may have a different file name saved, so take note of that when typing in the address or URL bar.

 [image: type file in address bar.jpg]

 Figure 1.14: The address or URL bar of the Opera browser.

 Step 10: Click the “Go” icon/button in the browser and wait a few seconds. The Apache server software, during this brief moment, is processing any PHP scripts embedded in the file hello.html.

 If you have previously learned Javascript or HTML, you will notice a difference in how the browser is launched to enable you to view the results of your code.

 In PHP, the file is accessed by launching the browser first, then typing the file name in the address bar.

 Step 11: Wait a few more seconds, but don’t blink. The browser is now interpreting the HTML file generated by the server.

 Step 12: This is how the output appears:

 [image:]

 Figure 1.15: Output of Hello.html in the browser Opera.

 [image:]

 Figure 1.16: Output of Hello.html in the browser Chrome.

 There is an alternative if you want to call your browser from your local WAMP tray instead of directly launching the browser yourself. After saving your file in Komodo Edit, proceed to step 7.

 Step 1-6: Same as previous steps.

 Step 7: Click the WAMP icon from the tray and choose localhost.

 [image: localhost.jpg]

 Figure 1.17: Launching localhost from WampServer’s Start Menu.

 Step 8: The WAMP local server homepage launches. In the text found at the address bar, append the forward slash (/) followed by the html file name hello.html.

 [image: WAMPSERVER hello file.jpg]

 Figure 1.18: Typing localhost/hello.html in the address or URL bar of Firefox.

 Step 9-10: The same as the previous steps.

 Step 11-12: This is the output.

 From my PC’s WAMP local server, it automatically launched the Firefox browser:

 [image:]

 Figure 1.19: The result of typing localhost/hello.html in the address or URL bar of Firefox which then executes hello.html, which simply displays “Hi There!”

 If a webpage contains PHP, the server processes it then interprets it for the browser, since the browser can only interpret HTML, CSS and Javascript. This is the reason why the file has to be accessed through the server and not directly from the webpage browser.

 To recap the entire workflow:

 1. Set up the development environment—install WAMP (or MAMP) and the text editor. Here we used Komodo Edit.

 2. Set up the default directory in the WAMP folder.

 3. Put the PHP server online. Launch your text editor.

 4. Encode your script.

 5. Save your file to the folder specially assigned to the server.

 6. Launch your preferred browser. Type in the script file to be processed.

 7. The server processes any PHP scripts embedded in the file.

 8. The browser interprets the HTML file generated by the server.

 9. The webpage is loaded. That’s it!

 [bookmark: _Toc387669563][bookmark: _Toc387669921][bookmark: _Toc387671648][bookmark: _Toc387671990]1.3 Writing your First Script

 PHP scripts are embedded in HTML documents. Therefore, the first thing you need to code in PHP scripts is the basic HTML structure.

 This is a basic, bare-bones structure of an HTML document:

 <!DOCTYPE html>

 <html>

 <head>

 <title>First PHP Script</title>

 </head>

 <body>

 </body>

 </html>

 To embed PHP code in this HTML document, you write the code between the opening, <?php, and closing, ?>, PHP tags inside the body element:

 <!DOCTYPE html>

 <html>

 <head>

 <title>First PHP Script</title>

 </head>

 <body>

 <?php

 ?>

 </body>

 </html>

 These opening and closing PHP tags isolate the PHP code from the HTML code.

 Now we can try adding more code by introducing the echo() command. This output command simply displays the text or values placed inside the quotes as shown in the following example.

 echo() should be placed between the PHP script tags. Think of the command line being sandwiched between the opening and closing PHP script tags.

 <!DOCTYPE html>

 <html>

 <head>

 <title>First PHP Script</title>

 </head>

 <body>

 <?php

 echo("This is my first PHP document");

 ?>

 </body>

 </html>

 You should save your code in the www folder (for Windows) or in the htdocs folder (for Mac) as first_document.php. Take note that even if the document is made using HTML and PHP, the server will not be able to process the PHP scripts embedded in the file if the filename extension is not .php.

 Open a local browser and type in the address bar: http://localhost/first_document.php

 [image:]

 Figure 1.20: The output of executing your first PHP script, first_document.php.

 You will see that the PHP script embedded in the HTML document has been processed and the echo command output the text (often called a string) to the browser window.

 PHP also allows you to embed HTML tags inside the echo() command. This HTML will be processed as any other HTML would in the browser.

 <!DOCTYPE html>

 <html>

 <head>

 <title>Hello!</title>

 </head>

 <body>

 <?php

 echo("<h1>This is my first PHP
document</h1>”);

 echo("</br>This is my second PHP statement");

 ?>

 </body>

 </html>

 Save the file with the changes under the same filename and refresh your browser.

 [image:]

 Figure 1.21: The output of your modified PHP script, first_document.php.

 You will notice that the HTML embedded within the echo() command has been processed and the string appears as large, bold text.

 Remember that the browser does not process PHP scripts—the server does that. To confirm this process, view the source code of first_document.php in the browser.

 [image:]

 Figure 1.22: Viewing the source code of first_document.php in your browser. Only HTML5 code remains. All the PHP code has been executed and then stripped away.

 Notice that all the PHP tags and commands have disappeared and what remained are the HTML tags. The reason for this is that the document was processed by the server, which executed all the PHP scripts it found in the document, leaving only the HTML tag source code.

 [bookmark: _Toc387669564][bookmark: _Toc387669922][bookmark: _Toc387671649][bookmark: _Toc387671991]1.4 echo(), print() and printf() Commands

 This section will discuss the basic commands for displaying content with PHP. By now, you are familiar with the echo() command. It is just one of the commands that can display text and also accommodate HTML tags within it.

 The other commands that similarly display output to the computer screen are print() and printf().

 print() is the same as echo(). It displays the specified text in the browser. There isn’t much difference between echo() and print(). Like the echo() command, print() may be used without the aid of parentheses, (). For example:

 echo "Hello! " ;

 will yield the same output as

 echo ("Hello! ");

 Now,

 print "Hello";

 will have the same result as

 print("Hello! ");

 printf() is different from print(). It also displays the output specified but uses a different format:

 printf(format, arg1, arg2, argn);

 arg1, arg2 and argn are the parameters specified which will replace the % sign inserted in the format. For example:

 printf("I am %d years old", 21);

 I am %d years old is the format and 21 is the argument. This prints: I am 21 years old. “%d” is known as a signifier. This signifier is used in conjunction with an integer number—such as 21.

 There are several different options for using printf(). For example a %f signifier represents a floating point number, which is a number that includes a decimal sign such as -32.454.

 A wide range of signifiers are available for printf and can be viewed by visiting www.w3schools.com/php/func_string_printf.asp.

 You implement these commands in PHP the same way you implement the echo() command.

 Now let’s construct a program that will use all three output commands at once so that we can see the differences.

 Step 1: Create a basic HTML document with a basic structure format and embed the PHP open and close tags. Use the new commands we have just learned following the presented format:

 <!DOCTYPE html>

 <html>

 <head>

 <title>output

 </title>

 <body>

 <?php

 echo "This is echoed out";

 echo ("</br>This is also echoed out");

 print ("</br>This line was displayed using print");

 print "</br>This line was displayed using print without the ()";

 printf ("</br>Today is the year %d.", 2013);

 printf ("</br>Five divided by two is %f", 2.5);

 ?>

 </body>

 </html>

 Step 2: Save the file in the www (or htdocs) folder and name it output. Save it with the extension name .php.

 Step 3: Once you’ve saved your file, open your browser and type http://localhost/output.php in the address bar.

 The output will appear like this:

 [image:]

 Figure 1.23: The result of executing output.php

 Printf() has more features when compared to print() and it can make the content easier to comprehend because of the formatting.

 That wraps up the three basic commands for displaying strings in PHP.

 [bookmark: _Toc387669565][bookmark: _Toc387669923][bookmark: _Toc387671650][bookmark: _Toc387671992]Chapter Quiz

 1. What does PHP stand for?

 a. Philadelphia Hyper People.

 b. Pre Hypertext Processor.

 c. Phenomenal Hilarious Panda.

 d. Post Hypertext Processing.

 2. What does A in WAMP stand for?

 a. Apache.

 b. Analog.

 c. Algorithm.

 d. Asynchronous.

 3. What address do you use to check the homepage generated by the Apache server for Windows?

 a. http://localhost

 b. https://localpage

 c. https://localhosts

 d. http://localhosts

 4. What is the correct opening PHP tag?

 a. <php

 b.<?php?

 c. <??php

 d.<?php

 5. Which commands can display a formatted string output?

 a. echo(" ");

 b. print(" ");

 c. prints(" ");

 d. printf(" ");

 [bookmark: _Toc387669566][bookmark: _Toc387669924][bookmark: _Toc387671651][bookmark: _Toc387671993]Chapter Lab Exercise:

 1. Create a HTML document with a bare-bones, basic structure.

 2. Insert the correct script tags so that PHP is recognized.

 3. Create the necessary codes to display your name, interests or hobbies, age, and birthday. Use the <h1> tag for your name, <h2> for displaying your interests or hobbies, and use the printf() command to display your age and birthday with the date format dd/mm/yyyy.

 4. Make sure that each piece of information is displayed in a new line. Use the break
 tags.

 [bookmark: _Toc387669567][bookmark: _Toc387669925][bookmark: _Toc387671652][bookmark: _Toc387671994]Chapter Lab Solution:

 [image:]

 Figure 1.24: Lab solution output.

 [bookmark: _Toc387669568][bookmark: _Toc387669926][bookmark: _Toc387671653][bookmark: _Toc387671995]Code listing: Chapter 1 Lab Solution

 <!DOCTYPE html>

 <html>

 <head>

 <title> PHP Lab Exercise 1</title>

 </head>

 <body>

 <?php

 echo("<h1> Adam Caper</h1>");

 echo("</br><h2>I like basketball, cooking, computer games, playing the guitar, and dancing.</h2>");

 printf ("</br>I am %d years old", 21);

 printf ("</br>My birthday is %d / %d / %d", 2, 7, 1992);

 ?>

 </body>

 </html>

 [bookmark: _Toc387669569][bookmark: _Toc387669927][bookmark: _Toc387671654][bookmark: _Toc387671996]Chapter Summary:

 In this chapter, you learned that PHP is a scripting language that is run on the server side. We also identified, downloaded and installed the software application packages needed to code and run PHP. We described the PHP workflow, and went into detail about how PHP codes are constructed, tested, and implemented.

 We explained that PHP scripts are embedded inside an HTML document and that HTML tags can also be embedded within PHP scripts.

 We also discussed three commands that are used to display text output, saw how PHP scripts are processed and explained why they disappear in the source code of the document.

 In the next chapter, we will talk about variables: how to name them, assign values to them, and how to use variables with different operators.

 [bookmark: _Toc387669570][bookmark: _Toc387669928][bookmark: _Toc387671655][bookmark: _Toc387671997]Chapter 2: Variables

 Chapter Objectives:

 	You will be able to define PHP variables and operators.

 	You will be able to describe the process of using variables and operators.

 	You will learn how to properly code variable operations.

 	You will be able to create and program PHP scripts involving variable operations.

 [bookmark: _Toc387669571][bookmark: _Toc387669929][bookmark: _Toc387671656][bookmark: _Toc387671998]2.1 Introducing Variables

 Variables are memory units allocated to store the values of any of the eight PHP data types, namely: integers, floating-point numbers, strings, booleans, arrays, objects, resources (or handles) and null. (We will tackle these data types in the next chapters.)

 Variables need to be given names. In PHP, variable names begin with the dollar ($) symbol followed by alphabetic and numeric characters and sometimes underscores. A rule of thumb in using underscores with variable names is that they may be placed anywhere in the name but never right after the $ sign. So, avoid variable names like $_myvariable.

 PHP variable names are also case-sensitive and so $MyVariable and $myvariable are two distinct variables. There is no limit to the number of characters in a variable name, but keep in mind that variable names longer than 30 characters are impractical.

 Some examples of acceptable PHP variable names are:

 $no_of_students

 $StudentNumber

 $NumOfStudents

 $customer_1

 Variables are declared differently in PHP than in many other programming languages. If you have encountered C, C++ or Java, you know that the declaration of a variable is usually accompanied by the declaration of its data type such as string, int, float or double. In PHP, the declaration of a variable does not need its data type to be declared. The only thing needed is for the variable name to be preceded by the “$” (dollar) sign. To illustrate, let’s declare a variable called age.

 In other languages, the declaration would be:

 int age = 21;

 But in PHP, the declaration is:

 $age = 21;

 Obviously, in PHP declarations the variable type is not required. This is the reason why PHP is called “a loosely typed language”. PHP assumes, from the value of 21 that you are assigning, that $age will be a variable of type integer. What’s more, in loosely typed languages, once you store a particular data type in a variable (for example, an integer) then you can later on store a float or a string to that same variable.

 To test this loose variable data typing, let’s declare different variables in PHP. Open your text editor and create a new file. On the starter page, look for the new file option at the bottom right portion of the screen. The location of the option is illustrated in the screenshot below.

 [image: Komodo Editor start page.jpg]

 Figure 2.1: Start Page for Komodo Edit. This page is displayed when you open the text editor.

 After clicking on New File, a pop-up window will display on your screen.

 [image:]

 Figure 2.2: Creating a new file from a template using Komodo Edit.

 Choose the HTML template option and then click the dropdown list for the directory and look for the \wamp\www folder option. For Mac users, look for the \MAMP\htdocs folder option. If you haven’t used any of those directories before, you can locate either of them by clicking on the local button and manually specifying the location of the www or MAMP folder.

 Save the file as variable.php and proceed with the new file creation.

 Add the proper PHP script tags in the body of the HTML.

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Variables In PHP</title>

 </head>

 <body>

 <?php

 ?>

 </body>

 </html>

 You are now ready to start declaring variables. Place your cursor between the opening and closing PHP tags.

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Variables In PHP</title>

 </head>

 <body>

 <?php

 $name = "Adam";

 $age = 21;

 print($name);

 print("
");

 print($age);

 ?>

 </body>

 </html>

 Save the file as variables.php, and access it in the browser by typing in the address bar, for Windows:

 http://localhost/variables.php

 and for the Mac:

 localhost:8888/variables.php

 Your output should appear in the browser window like this:

 [image:]Figure 2.3: Outputting declared variables in the browser.

 In the coding example shown, the value “Adam” is the string value assigned to the variable $name, while “21” is the numeric value assigned to the variable $age.

 Floating point numbers can also be stored in variables without having to declare their variable type. If you haven’t worked with them before, floating point values (sometimes called “floats”) are values that contain a decimal point.

 Variables in PHP may be assigned a series of mathematical operations. The result of those operations are computed first, after which they are then stored to the variable they’re assigned to.

 Tip: I often tell my classroom students that when they encounter a variable assignment, always evaluate the right side of the assignment operator (=) first and then assign the result to the variable on the left side. For example, if you have the code:

$x = 2 * 5;

 Two is multiplied by five and the result of the arithmetic, ten, is assigned to the variable $x.

 Let’s tweak the previous example and introduce the use of floating point number.

 Open the file variables.php and add the line of code found inside the PHP script tags from the following code listing:

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Variables In PHP</title>

 </head>

 <body>

 <?php

 $name = "Adam";

 $age = 21;

 $height = 165.1;

 print($name);

 print("
");

 print($age);

 print("
");

 print($height);

 ?>

 </body>

 </html>

 Save the file under the same filename variables.php, and access it in the browser by typing in the address bar, for Windows:

 http://localhost/variables.php

 and for the Mac:

 localhost:8888/variables.php

 Your output should look like this:

 [image:]

 Figure 2.4: Outputting declared variables in the browser, including a floating point number.

 Why don’t we try adjusting the output a little so that it makes more sense? Labeling each output value will certainly make more sense to the user. Modify your code listing as follows, save under the same file name, variables.php, and display the output:

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Variables In PHP</title>

 </head>

 <body>

 <?php

 $name = "Adam";

 $age = 21;

 $height = 165.1;

 print("First Name: ");

 print($name);

 print("
");

 print("Age: ");

 print($age);

 print("
");

 print("Height: ");

 print($height);

 ?>

 </body>

 </html>

 Now, access variables.php in the browser by typing in the address bar as we did previously: http://localhost/variables.php, for Windows, or localhost:8888/variables.php for Mac.

 Your output should look like the following screenshot:

 [image:]

 Figure 2.5: Labeling each output value.

 We were able to successfully place some text labels in front of our values using the print command. However, there is another process called concatenation which will enable us to accomplish the same task with more ease. Concatenation is the process of joining several distinct things or objects into one whole unit. In this example, we will concatenate each text label and its associated value into a single unit and display this unit on a line.

 The concatenation process in PHP is unique compared to other programming languages. If you are familiar with Javascript or HTML, you likely remember that the plus sign (+) is the concatenation operator. In PHP it is the period or dot (.) that is used for concatenation.

 If we change the previous code listing to employ concatenation, the code is shorter and more efficient:

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Variables In PHP</title>

 </head>

 <body>

 <?php

 $name = "Adam";

 $age = 21;

 $height = 165.1;

 print("First Name: ".$name);

 print("
");

 print("Age: ".$age);

 print("
");

 print("Height: ".$height);

 ?>

 </body>

 </html>

 When viewed in the web browser, the result should appear like this:

 [image:]

 Figure 2.6: Labeling each output value using the concatenation process.

 This example demonstrated a very simple case of concatenation. The following HTML document shows more examples of concatenation in PHP.

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Variables and Concatenation in PHP</title>

 </head>

 <body>

 <?php

 $name = "Adam";

 $age = 21;

 $taxRate = 0.12;

 print($name);

 print("
");

 print($age);

 print("</br> </br>");

 print($name . " is " . $age . " years old.");

 print("</br> </br>");

 printf("The tax rate in Guacamole Island is %0.2f", $taxRate);

 print("</br>");

 $value = 25*62/72+42-51+101*2;

 print("The final value of "."(25*62/72+42-51+101*2) "."is ". $value);

 ?>

 </body>

 </html>

 When viewed in the browser, the output will appear like this:

 [image:]

 Figure 2.7: Using the concatenation process in more complex cases.

 Keep in mind that when assigning variable names, you may use either alphabetic characters (A-Z, a-z), numbers, (0-9) or combinations of both, as well as the underscore character. While the underscore character can be used in any position after the $ sign, by convention it is not placed immediately after the $ sign. Lastly, variable names are case sensitive.

 It is a good practice to adopt a consistent style in naming variables. One such style requires that the underscore is used to separate whole words in variable names, such as $tax_Rate. Note also that the first letter of the first word is not capitalized but the first letter of succeeding words are capitalized, such as $pending_Tax_Payments.

 Whatever style or rules you adopt in naming your variables, they must be applied consistently.

 [bookmark: _Toc387669572][bookmark: _Toc387669930][bookmark: _Toc387671657][bookmark: _Toc387671999]2.2 Variable Operators

 The math operators in PHP are the same as your everyday basic arithmetic operators: addition, subtraction, multiplication and division. Aside from these four basic operations, there are also special operators such as increment, decrement, modulus and the combined operators.

 The addition operation calculates the sum of its operands (values stored in variables), the subtraction operation calculates the difference, multiplication computes the product, and division computes the quotient.

 The increment operator adds 1 to the value of the variable, the decrement operator subtracts 1, modulus gets the resulting remainder after a division operation between two values, and a combined operation is a combination of a variable operator and the equal (=) sign. This operation processes the first operation then stores it to the variable to the left of the combined operator sign.

 Take a look at the following examples:

 Two variables $x and $y are to be added and the result is to be stored in $x. This is easily done using the combined operator:

 $x += $y;

 The expression $x += $y would add the values of $x and $y and then store the value to $x, overwriting its original value.

 It is a good idea to familiarize yourself with these PHP variable operators. It is also expected that by this time you are already familiar with the process of creating new PHP files.

 Let’s brush up on the basic PHP program creation skills that you already learned and at the same time practice arithmetic operations.

 First, create a basic HTML document.

 <!DOCTYPE html>

 <html>

 <head>

 <title>Addition Operation in PHP</title>

 </head>

 Next, in the document body, include the PHP script tags. Assign two variables, $x and $y, that will hold two numeric values, 110 for $x and 52 for $y. Inside the PHP script tags, process the addition operation of the two variables.

 <body>

 <?php

 $x = 110;

 $y = 52;

 print($x." + ".$y." = ". ($x + $y));

 ?>

 </body>

 </html>

 Save your file as addOperation.php. The output should display as shown:

 [image:]

 Figure 2.8: Processing the addition operation of two variables.

 Let’s include the remaining three basic operations in the program code. You may copy and paste the lines of code adding $x and $y three times and then change the addition operator to subtraction (-), then to multiplication (*), and finally, to division (/). Save your file as operators.php and then refresh your browser.

 Tip: I am a big advocate of using copy and paste when writing program code. If you retype a line you increase the chance that you will inadvertantly introduce errors.

 The complete code listing for this example follows:

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Operators in PHP</title>

 </head>

 <body>

 <?php

 $x = 110;

 $y = 52;

 print($x . " + " . $y . " = " . ($x + $y));

 print("</br>");

 print($x . " - " . $y . " = " . ($x - $y));

 print("</br>");

 print($x . " * " . $y . " = " . ($x * $y));

 print("</br>");

 print($x . " / " . $y . " = " . ($x / $y));

 print("</br>");

 ?>

 </body>

 </html>

 Your output should display as shown:

 [image:]

 Figure 2.9: Processing the basic arithmetic operations of two variables.

 Obviously, you should expect a different result if you assigned different values for $x and $y.

 As you can see, the basic arithmatic operations are fairly easy to code. We will now discuss how the other special operators are implemented.

 In the following table, the special operators are listed along with the brief description of what they accomplish:

 	 Operator

 	 Description

 	 increment x++

 	 Increases the value of x by 1.

 	 decrement x--

 	 Decreases the value of x by 1.

 	 modulus x % y

 	 Returns the remainder after dividing x by y.

 	 combined operators:

 	

 	 concatenate then return .=

 	 Concatenate then return the result in the expression on the left side of the operator.

 	 add then return +=

 	 Add the value of the expression on the left side of the operator to the expression on the right side of the operator.

 	 subtract then return -=

 	 Subtract the value of the expression on the left side of the operator from the expression on the right side of the operator.

 	 multiply then return *=

 	 Multiply the value of the expression on the left side of the operator to the expression on the right side of the operator.

 	 divide then return /=

 	 Divide the value of the expression on the left side of the operator to the expression on the right side of the operator.

 Let’s expand on the operations shown in the previous example. We will include incrementing and decrementing values, obtaining the remainder of a division operation (modulus), and using the different combined operators.

 Continue with your PHP document operators.php.

 Change the document title to

 <title>"All PHP Operators"</title>

 Then save as another file using the filename alloperators.php.

 Add the following lines of code:to your original code listing,

 $x++;

 $y--;

 $x++ will increment $x.

 $y-- will decrement $y.

 Original code listing:

 <!DOCTYPE html>

 <html>

 <head>

 <title>Operators in PHP</title>

 </head>

 <body>

 <?php

 $x = 110;

 $y = 52;

 print($x . " + " . $y . " = " . ($x + $y));

 print("</br>");

 print($x . " - " . $y . " = " . ($x - $y));

 print("</br>");

 print($x . " * " . $y . " = " . ($x * $y));

 print("</br>");

 print($x . " / " . $y . " = " . ($x / $y));

 print("</br>");

 Append the following lines for an aesthetic output:

 print("</br>");

 print(“Incrementing x =” .$x++);

 print(“Decrementing y =” .$y--);

 print("</br>");

 print("Modulus of x and y = " . ($x%$y));

 print("</br>");

 Next, we’ll introduce more variables with the following names and values:

 $first = 10;

 $second = 3;

 $third = 20;

 $fourth = 4;

 $fifth = 30;

 $sixth = 7;

 $seventh = 50;

 $eighth = 6;

 Using these new variables, perform a combined addition with the $first and $second variables, combined subtraction with $third and $fourth, combined multiplication with $fifth and $sixth, and combined division with $seventh (dividend) and $eighth (divisor) variables:

 $first += $second;

 $third -= $fouthl

 $fifth *= $sixth;

 $seventh /= $eighth;

 Using the echo() command, display the values for $first, $third, $fifth and $seventh. Remember that the echo command works identically to the print() command:

 echo($first);

 echo("</br>");

 echo($third);

 echo("</br>");

 echo($fifth);

 echo("</br>");

 echo($seventh);

 echo("</br>");

 On the next two lines, use the combined operator concatenate then return (.=) to display the result of a concatenation.

 $line = ("Hello this is a test for concatenation and then...");

 $line .= ("</br> Connect this next phrase and place it on the next line");

 echo($line);

 Close the script and the entire document:

 ?>

 </body>

 </html>

 This is the result when the code is run:

 [image:]

 Figure 2.10: Using combined operators to output numbers and strings.

 Following is the entire code listing:

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Operators in PHP</title>

 </head>

 <body>

 <?php

 $x = 110;

 $y = 52;

 print($x . " + " . $y . " = " . ($x + $y));

 print("</br>");

 print($x . " - " . $y . " = " . ($x - $y));

 print("</br>");

 print($x . " * " . $y . " = " . ($x * $y));

 print("</br>");

 print($x . " / " . $y . " = " . ($x / $y));

 print("</br>");

 $x++;

 $y--;

 print("</br>");

 print("Incrementing x = " . $x);

 print("</br>");

 print("Decrementing y = " . $y);

 print("</br>");

 print("Modulus of x and y = " . ($x%$y));

 print("</br>");

 $first = 10;

 $second = 3;

 $third = 20;

 $fourth = 4;

 $fifth = 30;

 $sixth = 7;

 $seventh = 50;

 $eight = 6;

 $first += $second;

 $third -+ $fourth;

 $fifth *= $sixth;

 $seventh /= $eight;

 echo("</br>");

 echo($first);

 echo("</br>");

 echo($third);

 echo("</br>");

 echo($fifth);

 echo("</br>");

 echo($seventh);

 echo("</br></br>");

 $line = ("Hello this is a test for concatenation and then...");

 $line .= ("</br> Connect this next phrase and place it on the next line");

 echo($line);

 ?>

 </body>

 </html>

 [bookmark: _Toc387669573][bookmark: _Toc387669931][bookmark: _Toc387671658][bookmark: _Toc387672000]Chapter Quiz

 1. What are variables?

 a. Variables are containers for strings and numbers.

 b. Variables are containers for food.

 c. Variables vary with respect to time.

 d. Variables are processes that store values.

 2. What are the operations of the common arithmetic operators?

 a. Addition, subtraction, concatenation, division.

 b. Addition, subtraction, multiplication, division.

 c. Concatenation, decrement, increment, addition.

 d. Increment, decrement, addition, subtraction.

 3. What is the correct syntax for the combined operation concatenate then return in PHP?

 a. +=

 b. -=

 c. .=

 d. ==

 4. Instead of writing a routine that adds 1 to a certain variable, what operator can be used?

 a. increment

 b. decrement

 c. subtraction of -1

 d. both a and c

 [bookmark: _Toc387669574][bookmark: _Toc387669932][bookmark: _Toc387671659][bookmark: _Toc387672001]Chapter Lab Exercise:

 1. Create a HTML document with the simplest basic structure.

 2. Add the appropriate tags to include PHP scripts.

 3. Declare four variables. Name them $w, $x, $y, and $z and assign each of them the following integer values:

 $w = 5;

 $x = 25;

 $y = 13;

 $z = 101;

 4. Using echo() or print(), display the initial values assigned to the variables $w, $x, $y, and $z.

 5. Apply a line break. Add codes that will do the four basic mathematical operations to the four variables as follows:

 $w + $x

 $z – $y

 $z / $w

 $y *$x

 6. Display the answer for each mathematical operation but format the answer with one decimal place value. Store each of the results in a new variable. Assign the results to the following new variables:

 the sum of $w + $x to variable $a ,

 the difference of $z – $y to variable $b,

 the quotient of $z / $w to variable $c, and

 the product of y * x to variable $d.

 7. On the next line, display the results as follows—increment $a and $b displaying each of their results on separate lines, decrement $c and $d displaying each of their results on separate lines.

 8. Display the result of the following combined operation +=:

 $wxyz = ($a+= ($b+=($c+=$d)))

 [bookmark: _Toc387669575][bookmark: _Toc387669933][bookmark: _Toc387671660][bookmark: _Toc387672002]Chapter Lab Solution

 [image:]Figure 2.11: Lab Solution Output

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Chapter 2 Lab Exercise</title>

 </head>

 <body>

 <?php

 $w = 5;

 $x = 25;

 $y = 13;

 $z = 101;

 //display values of w, x, y, z

 echo("w = " . $w);

 echo("</br>");

 echo("x = " . $x);

 echo("</br>");

 echo("y = " . $y);

 echo("</br>");

 echo("z = " . $z);

 echo("</br>");

 $a = ($w + $x);

 $b = ($z - $y);

 $c = ($z / $w);

 $d = ($y * $x);

 //display result of basic operation

 //formatted with one decimal place value

 printf("w + x = %0.1f", $a);

 echo("</br>");

 printf("z - y = %0.1f", $b);

 echo("</br>");

 printf("z / w = %0.1f", $c);

 echo("</br>");

 printf("y * x = %0.1f", $d);

 echo("</br>");

 //increment a and b, decrement c and d

 $a++; $b++; $c--; $d--;

 //concatenate A, B, C and D values

 echo("A = " . $a . " | B = " . $b . " | C = " . $c . " | D = " .$d);

 echo("</br>");

 //display value of $wxyz

 $wxyz = ($a+= ($b+=($c+=$d)));

 echo($wxyz);

 ?>

 </body>

 </html>

 [bookmark: _Toc387669576][bookmark: _Toc387669934][bookmark: _Toc387671661][bookmark: _Toc387672003]Chapter Summary

 In this chapter, you learned about variables in PHP and how they differ from other languages when being declared and implemented.

 We discussed the different operators in PHP and how each of them is used. Also covered in this chapter were combined operators and concatenations in PHP and how they were implemented in actual program routines.

 In the next chapter we will discuss arrays—simple, associative, multidimensional and global arrays.

 [bookmark: _Toc387669577][bookmark: _Toc387669935][bookmark: _Toc387671662][bookmark: _Toc387672004]Chapter 3: Arrays

 Chapter Objectives:

 • You will be able to define arrays.

 • You will be able to describe the two types of PHP arrays: indexed and associative.

 • You will learn how to declare and instantiate arrays in PHP.

 • You will be introduced to some of PHP’s superglobal arrays.

 [bookmark: _Toc387669578][bookmark: _Toc387669936][bookmark: _Toc387671663][bookmark: _Toc387672005]3.1 Simple or Indexed Arrays

 Arrays are variables that can store more than one value. Each value of an array is called an element (or member) and each element is referenced by its own integer index, 0,1,2,3, and so on. The index also identifies the position of the element in the array. (An index of 0 identifies the first element, an index of 1, the second element, and so on.) Elements can be added, removed, modified and rearranged (sorted) within the array.

 Values stored in arrays can be any of the eight PHP data types: integer, floating point, string, boolean, object, resources, null and arrays. Yes, you read that correctly—arrays! Arrays can be stored within arrays!

 Arrays are widely used for storing values for lists. For example, if you wanted to store all of the names of the members of a team, an array is perfect.

 In PHP, the function used to create an array is array().

 Simple arrays (or indexed arrays) are arrays that use numeric indexing of members or elements. This numerical indexing is usually sequential but random or skipped indexing is allowed.

 Declaring arrays in PHP is similar to declaring variables in PHP—the dollar sign ($) is affixed before the variable name. Arrays are zero-indexed, meaning that indexes start from zero (0) – and that the zero index always points to the first member of the array.

 Declaring an array begins by stating the name of the array followed by the equal sign (=), and then the values to be stored in the array enclosed in parentheses. In the following example, we have an array declaration consisting of four elements of the datatype string:

 $names = array ("John", "Larry", "Jane", "Lily");

 If we look closely at the array presented, we’ll see that the first element is $names[0] and has the value “John”, the second element is $names[1] and has the value “Larry”, the third is $names[2] and has the value “Jane” and last is $names[3], and has the value “Lily”.

 The array can also be defined as:

 $names[0] = "John";

 $names[1] = "Larry";

 $names[2] = "Jane";

 $names[3] = "Lily";

 Operations or commands that can be executed on variables can also be performed on each member of an array, such as print(), echo(), concatenations, mathematical and special operations. We will demonstrate each one of these operations with coding exercises using arrays.

 Create a new HTML template and save it in the www (for Windows) or htdocs (for Mac) folder using the filename simple_array.php. Place the proper opening and closing tags.

 [image:]

 Figure 3.1: Komodo Edit start page.

 [image:]

 Figure 3.2: Creating a new HTML5 document in Komodo Edit.

 [image:]

 Figure 3.3: Saving the document as simple_array.php.

 [image:]

 Figure 3.4: Declaring an array in PHP in line 10.

 In the series of screenshots above, we have declared the array. Another way of declaring an array is the manual method where we assign the individual members of the arrays to their respective indeces.

 We’re going to declare the array using the array name $fruit[] and manually assign values to each element of the array by typing the following code:

 $fruit[0] = "Berries";

 $fruit[3] = "Mangos";

 $fruit[4] = "Apples";

 $fruit[5] = "Grapes";

 [image:]

 Figure 3.5: Manually assigning values to members of an array. Lines 9 to 12.

 Notice that we skipped the array indexes one and two while assigning values to the array.

 When manually assigning elements of an array, it is possible to skip an index in the sequence. The previous simple_array.php example (which skipped a member index during array member assignment) was shown for illustration purposes only. This assignment method could prove useful in some instances, but does not imply the standard process of numbering array indexes. The best and standard practice is to store elements of an array sequentially.

 Once the array has been created and populated, we now retrieve and display the elements of the array. This can be done using either or in combination echo(), print() or printf().

 Remember, when retrieving or referencing a member of an array, we do so by referring to the array variable name together with the member or index number. For example, if we want to call the $names array member “John”, we refer to this member as $names[1], or if we want to call the $fruit array member “Apple”, we refer to it as $fruit[4].

 We will now demonstrate how to retrieve members of an array and perform concatenation operations on them.

 Problem: Create a program routine that will display the output:

 “John likes to eat Grapes.”

 “Larry likes to eat Mangoes.”

 “Jane likes to eat Apples.”

 “Lily likes to eat Berries.”

 Solution:

 Step 1: Construct each of the sentences using a series of concatenations. Store the names John, Larry, Jane and Lily in the array $names. Store the fruits Grapes, Mangoes, Apples and Berries in another array $fruit. Concatenate each member of the array $names with the corresponding member (members of the same index) of array $fruit with the phrase “likes to eat ” inserted between the pair.

 We would like the array members to pair as:

 “John” to “Grapes”

 “Larry” to “Mangoes”

 “Jane” to “Apples”

 “Lily” to “Berries”

 Step 2: Use the echo() command to display the output.

 Step 3: The command line that will display this output is:

 echo($names[1]. " likes to eat ". $fruit[5]);

 The preceding statement will display: “John likes to eat Grapes”

 Step 4: The complete code listing to display all four statements—pairing each of the $names array members to the $fruit array members, respectively—is as follows:

 [bookmark: _Toc387669579][bookmark: _Toc387669937][bookmark: _Toc387671664][bookmark: _Toc387672006]Code Listing: simple_array.php

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Chapter 3: Simple Array</title>

 </head>

 <body>

 <?php

 $first_names = array("John", "Larry", "Jane", "Lily");

 //Assign the array members

 $fruit[0] = "Berries";

 $fruit[3] = "Mangoes";

 $fruit[4] = "Apples";

 $fruit[5] = "Grapes";

 //Display the array member pairing

 echo($first_names[0] . " likes to eat " . $fruit[5]);

 echo("</br>");

 echo($first_names[1] . " likes to eat " . $fruit[3]);

 echo("</br>");

 echo($first_names[2] . " likes to eat " . $fruit[4]);

 echo("</br>");

 echo($first_names[3] . " likes to eat " . $fruit[0]);

 echo("</br>");

 ?>

 </body>

 </html>

 Step 5: View your result. The output should appear as shown:

 [image:]

 Figure 3.6: Constructing sentences by calling members of simple arrays.

 [bookmark: _Toc387669580][bookmark: _Toc387669938][bookmark: _Toc387671665][bookmark: _Toc387672007]3.2 Associative Arrays

 Associative arrays are arrays that assign a unique key value to each array member. These arrays use named keys to identify their members or elements as opposed to the numeric keys (indices) used for simple arrays. Let’s say you want to store employees’ salaries in an array. Numerically indexed arrays will not be the best choice to store these values. In an associative array, the employee’s name acts as the key and from their names, their salary rate is associated.

 Declaring associative arrays is different compared to numerically indexed arrays. Numerically index arrays follow this array declaration format:

 $variable name [index number] = value;

 Associative arrays follow this declaration format:

 $variable name = array(key name => value,)

 Let’s try this out.

 Step 1: Create a new HTML5 document in your text editor. Use the filename associative_array.php. Make sure you include the PHP opening and closing tags. Save your file.

 Step 2: Now let’s create an array that contains four employees and their respective salaries.

 We’ll have the employees “Doe” with an annual salary of $30,000, “Smith” with an annual salary of $28,000, “Rogers” with an annual salary of $50,000, “Adam” with an annual salary of $120,000, and “Brown” with an annual salary of 60,000.

 The associative array declaration will be:

 $salary = array("Doe" => 30000,

 "Smith" => 28000,

 "Rogers" => 50000,

 "Adam" => 120000,

 "Brown" => 60000);

 Note the use of whitespace and alignment to make the code more readable. We could have declared the array using one line, with minimal spacing, like this:

 $salary = array("Doe"=>30000,"Smith"=>28000,"Rogers"=>

 50000, Adam"=>120000,Brown"=>75000);

 But this is not as readable as the previous declaration.

 Step 3: Then we’ll have the output displayed using echo() or print() with the aid of concatenation stating “Full name has an annual salary of $salary["Doe"].” The command to display the intended output is:

 print("John Doe has an annual salary of " . $salary["Doe"] . ”
”);

 The following code will display all of the values stored inside the array.

 //Display the array members

 echo("John Doe has an annual salary of $" . $salary["Doe"] . ".");

 echo("</br>");

 echo("Robert Smith has an annual salary of $" . $salary["Smith"] . ".");

 echo("</br>");

 echo("Sam Rogers has an annual salary of $" . $salary["Rogers"] . ".");

 echo("</br>");

 echo("Drei Adam has an annual salary of $" . $salary["Adam"] . ".");

 echo("</br>");

 echo("Jim Brown has an annual salary of $" . $salary["Brown"] . ".");

 echo("</br>");

 Step 4: Close the PHP script, making sure you have the appropriate HTML closing tags. Save the file again.

 ?>

 </body>

 </html>

 Step 5: Compare your program with the following code listing.

 [bookmark: _Toc387669581][bookmark: _Toc387669939][bookmark: _Toc387671666][bookmark: _Toc387672008]Code Listing: associative_array.php

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Chapter 3: Associative Array</title>

 </head>

 <body>

 <?php

 //Declare the array

 $salary = array("Doe"=>"30,000", "Smith"=>"28,000", "Rogers"=>"50,000", "Adam"=>"120,000", "Brown"=>"75,000");

 //Display the array members

 echo("John Doe has an annual salary of $" . $salary["Doe"] . ".");

 echo("</br>");

 echo("Robert Smith has an annual salary of $" . $salary["Smith"] . ".");

 echo("</br>");

 echo("Sam Rogers has an annual salary of $" . $salary["Rogers"] . ".");

 echo("</br>");

 echo("Drei Adam has an annual salary of $" . $salary["Adam"] . ".");

 echo("</br>");

 echo("Jim Brown has an annual salary of $" . $salary["Brown"] . ".");

 echo("</br>");

 ?>

 </body>

 </html>

 Step 6: View your result in the browser. Don’t forget to make sure you are viewing the results through the server using localhost. If you coded everything correctly, the output should look like this:

 [image:]

 Figure 3.7: Outputting values stored inside associative arrays.

 We could also use associative arrays to display a list of GPAs of several individuals and their courses. The complete code listing and the output are shown as follows:

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Multiple Associative Arrays</title>

 </head>

 <body>

 <?php

 //Declare the GPA array.

 $gpa = array("Doe"=>3.0, "Smith"=>3.0, "Rogers"=>3.5, "Adam"=>4.5, "Brown"=>4.0);

 //Declare the COURSE array.

 $course = array("Doe"=>"Office Management", "Smith"=>"Certified Operator", "Rogers"=>"Office Management", "Adam"=>"Electronics Engineering", "Brown"=>"Information Technology");

 //Display the output for each array member.

 echo("John Doe has a GPA of " . $gpa["Doe"] . " and took up ". $course["Doe"]. ".");

 echo("</br>");

 echo("Robert Smith has a GPA of " . $gpa["Smith"] . " and is a ".$course["Smith"].".");

 echo("</br>");

 echo("Sam Rogers has a GPA of " . $gpa["Rogers"] . " and took up ".$course["Rogers"].".");

 echo("</br>");

 echo("Drei Adam has a GPA of " . $gpa["Adam"] . " and has a degree in ".$course["Adam"].".");

 echo("</br>");

 echo("Jim Brown has a GPA of " . $gpa["Brown"] . " and has a degree in ".$course["Brown"].".");

 echo("</br>");

 ?>

 </body>

 </html>

 [image:]

 Figure 3.8: Using associative arrays to output a list of GPAs.

 [bookmark: _Toc387669582][bookmark: _Toc387669940][bookmark: _Toc387671667][bookmark: _Toc387672009]3.3 Multidimensional Arrays

 Multidimensional arrays are arrays whose elements or members are arrays. A multidimensional array is one main array containing several arrays called “sub-arrays”. One common use of multi-dimensional arrays are in computer games. If you think of game “levels,” typically, the information about these levels is held in one or more multidimensional arrays.

 Declaring multidimensional arrays is similar to declaring associative arrays, but instead of having keys and their respective values, you would still have keys but each value would be an array.

 Let’s work on an example. Let’s open a new file and examine some coding samples to better understand the concept.

 Create a new HTML5 document and save it in the www (for Windows, WAMP) or htdocs (for Mac, MAMP) folder under the filename multidimensional_array.php.

 [image: Komodo Create new HTML 5 doc.jpg]

 Figure 3.9: Komodo Edit start page.

 [image:]

 Figure 3.10: Saving a new document as a multidimensional_array.php.

 Make sure you include the PHP opening and closing script tags in your file.

 The following array content examples are from a popular online role-paying game. The main array is the backpack and the sub-arrays will be Weapons, Armors, Useables, Key_Items and Magic_Items. Each sub-array will be an associative array describing the contents of each division.

 Weapons will be a simple array consisting of the following members:

 Krasnaya, Executioner, Violet Fear, Atroce’s Blade

 "Weapon" => array

 (

 "Krasnaya",

 "Executioner",

 "Violet Fear",

 "Atroce's Blade"

),

 Armors array will consist of the following members:

 Lord Kaho’s Horns, Megingjard, Sleipnir, Dragon Manteau, Ears of Ifrit

 "Armors" => array

 (

 "Lord Kaho's Horns",

 "Megingjard",

 "Sleipnir",

 "Dragon Manteau",

 "Ears of Ifrit"

),

 Useables will consist of the following members:

 Yggdrasil Berry, Berserk Potion, Authoritative Badge, Speed potion, Panacea, Cursed Water

 "Useables" => array

 (

 "Yggdrasil Berry",

 "Berserk Potion",

 "Authoritative Badge",

 "Speed Potion",

 "Panacea",

 "Cursed Water"

),

 Key_Items array will consist of the following members:

 Continental Guard Certificate, Ashes of Darkness, Dragon Tooth, Dragon Scale, Dragon Skin

 "Key_Items" => array

 (

 "Continental Guard Certificate",

 "Ashes of Darkness",

 "Dragon Tooth",

 "Dragon Scale",

 "Dragon Skin"

),

 Magic_Items array will consist of the following members:

 Lvl10 Blessing Scroll, Lvl10 Increase AGI Scroll, Lvl 10 Assumptio Scroll

 "Magic_Items" => array

 (

 "Lvl10 Blessing Scroll",

 "Lvl10 Increase AGI Scroll",

 "Lvl10 Assumptio Scroll"

),

 Now that the multidimensional array structure has been populated with elements, we can show you how to call each array member.

 The syntax used to reference a multidimensional array element would be:

 $variablename[subarray1][subarray2][subarray…]

 When implemented in the multidimensional array $Backpack, this would mean:

 $backpack = array ("Weapons" => array("Krasnaya", "Executioner", "Violet Fear", "Atroce's Blade"),

 ("Armors" => array ("Lord Kaho's Horns", "Megingjard", "Sleipnir", "Dragon Manteau", "Ears of Ifrit"),

 ("Useables" => array("Yggdrasil Berry", "Berserk Potion", "Authoritative Badge", "Speed Potion", "Panacea", "Cursed Water"),

 ("Key_Items" => array("Continental Guard Certificate", "Ashes of Darkness", "Dragon Tooth", "Dragon Scale", "Dragon Skin"),

 ("Magic_Items" => array("Lvl10 Blessing Scroll", "Lvl10 Increase AGI Scroll", "Lvl10 Assumptio Scroll"));

 To make the above multidimensional array declaration easier to read, you might want to follow this format:

 $backpack = array(

 "Weapons" => array

 ("Krasnaya",

 "Executioner",

 "Violet Fear",

 "Atroce's Blade"),

 "Armors" => array

 ("Lord Kaho's Horns", "Megingjard",

 "Sleipnir",

 "Dragon Manteau",

 "Ears of Ifrit"),

 "Useables" => array

 ("Yggdrasil Berry",

 "Berserk Potion",

 "Authoritative Badge",

 "Speed Potion",

 "Panacea",

 "Cursed Water"),

 "Key_Items" => array

 ("Continental Guard Certificate", "Ashes of Darkness",

 "Dragon Tooth",

 "Dragon Scale",

 "Dragon Skin"),

 "Magic_Items" => array

 ("Lvl10 Blessing Scroll",

 "Lvl10 Increase AGI Scroll", "Lvl10 Assumptio Scroll")

);

 Tip: As experienced software engineers will tell you, you’re writing code for multiple audiences. The first audience for PHP code is the server that will interpret it. The second audience is human beings (including yourself) that will have to read your code. Good software engineering practice demands that you write code that is readable by both audiences.

 Now that each array is filled with members, we can try calling each member while inside the multidimensional array. To do this, we will follow the format:

 $variablename[subarray1][subarray2][subarray…]

 For example, let’s say we want to call the array member “Executioner” (which belongs to the sub-array Weapon) and then display it. The correct code would be:

 echo($backpack['Weapon'][1]);

 The same syntax is applied if you would want to access the other members in the array. Let’s display the entire “backpack’s inventory”—each division inside the backpack, then all the “items” in each division, after which we display a single item from each of the division in no particular order.

 Display all “backpack” divisions and all the items in each “division”:

 echo("Backpack Contents for Weapons: </br>");

 echo($backpack['Weapons'][0] . "</br>");

 echo($backpack['Weapons'][1] . "</br>");

 echo($backpack['Weapons'][2] . "</br>");

 echo($backpack['Weapons'][3] . "</br></br>");

 echo("Backpack Contents for Armors: </br>");

 echo($backpack['Armors'][0] . "</br>");

 echo($backpack['Armors'][1] . "</br>");

 echo($backpack['Armors'][2] . "</br>");

 echo($backpack['Armors'][3] . "</br>");

 echo($backpack['Armors'][4] . "</br></br>");

 echo("Backpack Contents for Useables: </br>");

 echo($backpack['Useables'][0] . "</br>");

 echo($backpack['Useables'][1] . "</br>");

 echo($backpack['Useables'][2] . "</br>");

 echo($backpack['Useables'][3] . "</br>");

 echo($backpack['Useables'][4] . "</br>");

 echo($backpack['Useables'][5] . "</br></br>");

 echo("Backpack Contents for Key Items: </br>");

 echo($backpack['Key_Items'][0] . "</br>");

 echo($backpack['Key_Items'][1] . "</br>");

 echo($backpack['Key_Items'][2] . "</br>");

 echo($backpack['Key_Items'][3] . "</br>");

 echo($backpack['Key_Items'][4] . "</br></br>");

 echo("Backpack Contents for Magic Items: </br>");

 echo($backpack['Magic_Items'][0] . "</br>");

 echo($backpack['Magic_Items'][1] . "</br>");

 echo($backpack['Magic_Items'][2] . "</br></br>");

 The complete code listing should now be:

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Multidimensional Arrays</title>

 </head>

 <body>

 <?php

 $backpack = array

 (

 "Weapons" => array

 (

 "Krasnaya",

 "Executioner",

 "Violet Fear",

 "Atroce's Blade",

),

 "Armors" => array

 (

 "Lord Kaho's Horns",

 "Megingjard",

 "Sleipnir",

 "Dragon Manteau",

 "Ears of Ifrit",

),

 "Useables" => array

 (

 "Yggdrasil Berry",

 "Berserk Potion",

 "Authoritative Badge",

 "Speed Potion",

 "Panacea",

 "Cursed Water",

),

 "Key_Items" => array

 (

 "Continental Guard Certificate",

 "Ashes of Darkness",

 "Dragon Tooth",

 "Dragon Scale",

 "Dragon Skin",

),

 "Magic_Items" => array

 (

 "Lvl 10 Blessing Scroll",

 "Lvl 10 Increase AGI Scroll",

 "Lvl 10 Assumptio Scroll",

),

);

 echo("Backpack Contents for Weapons: </br>");

 echo($backpack['Weapons'][0] . "</br>");

 echo($backpack['Weapons'][1] . "</br>");

 echo($backpack['Weapons'][2] . "</br>");

 echo($backpack['Weapons'][3] . "</br></br>");

 echo("Backpack Contents for Armors: </br>");

 echo($backpack['Armors'][0] . "</br>");

 echo($backpack['Armors'][1] . "</br>");

 echo($backpack['Armors'][2] . "</br>");

 echo($backpack['Armors'][3] . "</br>");

 echo($backpack['Armors'][4] . "</br></br>");

 echo("Backpack Contents for Useables: </br>");

 echo($backpack['Useables'][0] . "</br>");

 echo($backpack['Useables'][1] . "</br>");

 echo($backpack['Useables'][2] . "</br>");

 echo($backpack['Useables'][3] . "</br>");

 echo($backpack['Useables'][4] . "</br>");

 echo($backpack['Useables'][5] . "</br></br>");

 echo("Backpack Contents for Key Items: </br>");

 echo($backpack['Key_Items'][0] . "</br>");

 echo($backpack['Key_Items'][1] . "</br>");

 echo($backpack['Key_Items'][2] . "</br>");

 echo($backpack['Key_Items'][3] . "</br>");

 echo($backpack['Key_Items'][4] . "</br></br>");

 echo("Backpack Contents for Magic Items: </br>");

 echo($backpack['Magic_Items'][0] . "</br>");

 echo($backpack['Magic_Items'][1] . "</br>");

 echo($backpack['Magic_Items'][2] . "</br></br>");

 ?>

 </body>

 </html>

 The output should look like this:

 [image:]Figure 3.11: Outputting all members of a multidimensional array.

 If we just want the individual items displayed, then our code listing can be just as simple as:

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Multidimensional Arrays</title>

 </head>

 <body>

 <?php

 $backpack = array

 (

 "Weapons" => array

 (

 "Krasnaya",

 "Executioner",

 "Violet Fear",

 "Atroce's Blade",

),

 "Armors" => array

 (

 "Lord Kaho's Horns",

 "Megingjard",

 "Sleipnir",

 "Dragon Manteau",

 "Ears of Ifrit",

),

 "Useables" => array

 (

 "Yggdrasil Berry",

 "Berserk Potion",

 "Authoritative Badge",

 "Speed Potion",

 "Panacea",

 "Cursed Water",

),

 "Key_Items" => array

 (

 "Continental Guard Certificate",

 "Ashes of Darkness",

 "Dragon Tooth",

 "Dragon Scale",

 "Dragon Skin",

),

 "Magic_Items" => array

 (

 "Lvl 10 Blessing Scroll",

 "Lvl 10 Increase AGI Scroll",

 "Lvl 10 Assumptio Scroll",

),

);

 echo("Weapons[3] : ");

 echo($backpack['Weapons'][3] . "</br></br>");

 echo("Armors[1] : ");

 echo($backpack['Armors'][1] . "</br></br>");

 echo("Useables[5] : ");

 echo($backpack['Useables'][5] . "</br></br>");

 echo("Key Items[0] : ");

 echo($backpack['Key_Items'][0] . "</br></br>");

 echo("Magic Items[2] : ");

 echo($backpack['Magic_Items'][2] . "</br></br>");

 ?>

 </body>

 </html>

 The output should look like:

 [image:]

 Figure 3.12: Outputting individual members of a multidimensional array.

 Let’s do another example.

 For this exercise, we will create the array $teams which contains three sub-arrays: Yankees, Mets and Red Sox. Each sub-array is an associative array whose elements are the players’ last names.

 Our program will complete a very simple task: display the first team’s name together with its first member’s name. On the next line, display the next team’s name, and its first member. The program will do the same for the third team until all teams and members’ names have been displayed.

 Create a new HTML5 document and save it in the www (for Windows, WAMP) or htdocs (for Mac, MAMP) folder under the filename multidimensional_array.php.

 In your head element, type inside the <title> tag “Teams and Members”. This will be your page’s title.

 <!DOCTYPE html>

 <html>

 <head>

 <title>Teams and Members</title>

 </head>

 Add the PHP tags in the <body > of the document:

 <body>

 <?php

 ?>

 Within the PHP tags, declare the main array $teams, whose members are Yankees, Mets and Red Sox. (These will be the keys to each element, which is itself an array, of the $teams array.) Fill in the members list accordingly by typing in the following:

 $teams = array

 (

 "Yankees" => array

 (

 "Rivera",

 "Jeter",

 "Granderson”,

 "Sabathia",

 "Gradner"

),

 "Mets" => array

 (

 "Dickey",

 "Acosta",

 "Pelfrey"

),

 "Red Sox" => array

 (

 "Ortiz",

 "Bard",

 "Bucholz",

 "Beckett"

)

);

 While still within the PHP tags, add the command to display the name of the first team (as a string for now) followed by the first member of the team array. Use the echo() command:

 echo("Yankees--(1) " . $teams['Yankees'][0]);

 Display the name of the second team followed by the second member of that team array. Insert a break between the two output lines. The code should now progress as:

 echo("Yankees--(1) " . $teams['Yankees'][0]);

 echo("
");

 echo("Mets------(1) " . $teams['Mets'][0]);

 Continue displaying the name of the team followed by the next member in succession until all array members, preceded by their team name, have been displayed:

 echo("Yankees--(1) ".$teams['Yankees'][0]);

 echo("
");

 echo("Mets------(1) ".$teams['Mets'][0]);

 echo("
");

 echo("Red Sox--(1) ".$teams['Red Sox'][0]);

 echo("

");

 echo("Yankees--(2) ".$teams['Yankees'][1]);

 echo("
");

 echo("Mets------(2) ".$teams['Mets'][1]);

 echo("
");

 echo("Red Sox--(2) ".$teams['Red Sox'][1]);

 echo("

");

 echo("Yankees--(3) ".$teams['Yankees'][2]);

 echo("
");

 echo("Mets------(3) ".$teams['Mets'][2]);

 echo("
");

 echo("Red Sox--(3) ".$teams['Red Sox'][2]);

 echo("

");

 echo("Yankees--(4) ".$teams['Yankees'][3]);

 echo("
");

 echo("Mets------(4) ".$teams['Mets'][3]);

 echo("
");

 echo("Red Sox--(4) ".$teams['Red Sox'][3]);

 echo("

");

 echo("Yankees--(5) ".$teams['Yankees'][4]);

 echo("
");

 echo("Mets------(5) ".$teams['Mets'][4]);

 echo("
");

 echo("Red Sox--(5) ".$teams['Red Sox'][4]);

 echo("

");

 And then close the script and the document:

 ?>

 </body>

 </html>

 Save the file and launch Firefox. In the URL or address bar, type localhost/multidimensional_array.php (for the Mac, type localhost:8888/multidimensional_array.php) and view the output.

 You will notice that the first three names displayed without any problem:

 [image:]

 Figure 3.13: Outputting array members in the browser.

 While the remaining array members displayed like this:

 [image:]Figure 3.14: Calling undefined members of an array results in an error.

 Array members that do not have an explicit assigned value were reported as “undefined offset”. A good way to resolve this is to display spaces when there are no more names to display.

 The routine should determine if the name read is the last member of the array, and, if it is, then it should just “print” spaces in place of the lacking array member until the task has finished displaying the names for all the teams. The commands that will help accomplish this are discussed in the next chapter—conditionals. We will reserve the discussion and presentation of the solution for the next chapter.

 [bookmark: _Toc387669583][bookmark: _Toc387669941][bookmark: _Toc387671668][bookmark: _Toc387672010]3.4 Super Global Arrays

 Superglobals are built-in (pre-defined) associative array variables in PHP that were introduced in PHP version 4.1.0. These variables are automatically available to all PHP code, meaning there is no need to create an additional routine to make them publicly available to the entire PHP script.

 Superglobals represent data coming from URLs, HTML forms, cookies, sessions, and the web server itself. These arrays are also accessible within a function.

 For additional help and reference, you may visit the following URLs that provide friendly discussions on PHP:

 http://php.net/manual/en/index.php

 http://www.w3schools.com/php/default.asp

 The most common uses of PHP superglobal arrays are in obtaining values from HTML forms. Here are nine superglobal arrays for the programmer to use. They are:

 $_GET

 $_POST

 $_REQUEST

 $_COOKIE

 $_SESSION

 $_SERVER

 $_ENV

 $_FILES

 $_GLOBAL

 Since we are operating on a local server in this book, our discussion will be limited to $_GET, $_POST, and $_REQUEST as we can easily demonstrate these three superglobals in the local sever context.

 The superglobal $_GET represents data coming from a URL and sent to the PHP script via the get protocol. It is a pre-defined variable used to collect values from an HTML form using the method get. $_GET contains an associative array of variables passed to the current script through the URL parameters.

 NOTE: The GET method should not be used when sending passwords or other sensitive information because this information is then appended to the end of URLs and ends up being displayed in the URL’s address bar and thus visible to the whole world. It is also not suitable for very large variable values and should not be used with values exceeding 2000 characters.

 In the line below we use the $_GET superglobal to access a parameter called ‘userName’ that has been passed in from a form. We assign the value to a local variable called $name:

 $name = $_GET['userName'];

 The $_POST superglobal represents data from the hypertext transfer protocol (http) post protocol. It is a pre-defined variable used to collect values from an HTML form using the method post.

 The post method is said to be more secure than the get method. This is because the get method passes values as a query string which is appended to the URL and thus visible in the address bar of the browser. There is no query string visible with the post method.

 In the following line of code, the value of $_POST superglobal ‘userName’ is accessed and the value assigned to the local variable $name:

 $name = $_POST['userName'];

 The superglobal $_COOKIE represents an associative array of variables from the hypertext transfer protocol (http cookies) available to a PHP script. $_REQUEST represents an associative array of variables which by default contain the contents of $_GET, $_POST and $_COOKIE sent to the PHP script.

 Following are the remaining six superglobals:

 $_SESSION represents data available to the current PHP script that has been previously stored in a session.

 $_SERVER represents data from the web server itself available to a PHP script. It is a special reserved PHP variable that contains all web information. It is an array containing information such as headers, paths and script locations. The entries in this array are created by the web server.

 $_ENV represents data available to a PHP script from the environment in which PHP is running. These variables are imported into PHP’s global namespace from the environment under which the PHP parser is running.

 NOTE: Since PHP may run under different shells, a definite list of $_ENV global namespace is impossible.

 Example:

 <?php

 echo 'My username is' . $_ENV[“USER”] . '! ';

 ?>

 $_FILES represents data available to a PHP script from http POST file uploads. $_FILES is the presently preferred method to handle uploaded files in PHP.

 $_GLOBAL represents associative array variables containing references to all variables currently defined in the global scope of the script. The variable names are the keys of the array.

 Let’s create a more extensive example that makes use of the superglobal variables $_GET, $_POST, and $_REQUEST. In particular, we will show the difference between using $_GET and $_POST.

 The first step is to create a basic HTML5 form. In the form, we will ask for the name and age of the user. Then we retrieve that data, first from the superglobal variable $_GET and then from $_POST.

 Step 1: Create a fresh HTML5 document to come up with the form containing the following elements userName and userAge:

 [image:]

 Figure 3.15: Creating a new document: sampleForm.html.

 This is the resulting window after clicking Open:

 [image:]

 Figure 3.16: Initial HTML code for sampleForm.html.

 Step 2: Type in the title tag “Sample Form”.

 In the document body, include a form tag with the action attribute equal to “superGlobals.php” and the method attribute equal to post, then close the tag.

 [image:]

 Figure 3.17: Adding a form tag to the document body. Note the attributes action and method.

 Step 3: Add a table. In the first table row <tr>, include a table data cell with the heading “Hello, this is our example.” using <h1>.

 <table>

 <tr>

 <td><h1>Hello, this is our example</h1></td>

 </tr>

 [image:]

 Figure 3.18: Adding table data cells to a table.

 Step 4: Add another table row with two table data <td> cells. The first table data cell will hold the text “Please Enter Your First Name:”, while the second table data cell will contain the input form element to capture the user’s first name, (userName).

 <tr>

 <td>Please Enter Your First Name:</td>

 <td><input name="userName" /></td>

 </tr>

 [image:]Figure 3.19: Adding an input form element (name=”username”) to a table data cell.

 Step 5: Add another table row with two table data <td> cells. The first table data cell will hold the text “Please Enter Your Age”, while the second table data cell will contain the input form element to capture the user’s age (userAge).

 <tr>

 <td>Please Enter Your Age: </td>

 <td><input name="userAge" /></td>

 </tr>

 [image:]

 Figure 3.20: Adding a second input form element (name=”userAge”).

 Step 6: Lastly, add another table row that has one table data cell. This cell will contain the submit button:

 <tr>

 <td><input type="submit" value="Submit" /></td>

 </tr>

 [image:]

 Figure 3.21: Adding a table data cell containing a submit button.

 The complete code listing for sampleForm.html is:

 [bookmark: _Toc387669584][bookmark: _Toc387669942][bookmark: _Toc387671669][bookmark: _Toc387672011]Code Listing: sampleForm.html

 <!DOCTYPE html>

 <html>

 <head>

 <title>Sample Form</title>

 </head>

 <body>

 <form action="superGlobals.php" method="post">

 <table>

 <tr>

 <td><h1>Hello, this is our example</h1></td>

 </tr>

 <tr>

 <td>Please Enter Your First Name:</td>

 <td><input name="userName" /></td>

 </tr>

 <tr>

 <td>Please Enter Your Age: </td>

 <td><input name="userAge" /></td>

 </tr>

 <tr>

 <td><input type="submit" value="Submit" /></td>

 </tr>

 </table>

 </form>

 </body>

 </html>

 Step 7: View your output. This is how the form will look:

 [image:]

 Figure 3.22: Viewing sampleForm.html in the browser.

 Now that the form is ready, we can proceed with writing the PHP script document.

 Step 1: Create a blank PHP document and save it under the filename superGlobalsGet.php.

 We are now ready to proceed with the first superglobal variable $_GET.

 Step 2: Type the following code in your superGlobalsGet.php document, then save:

 <?php

 $name=$_GET['userName'];

 $age=$_GET['userAge'];

 ?>

 Step 3: Add the command to display the following output:

 userName is userAge years old.

 The code to do this is:

 echo($name . " is " . $age . " years old. ");

 The complete PHP script should now look like this:

 <?php

 $name=$_GET['userName'];

 $age=$_GET['userAge'];

 echo($name . " is " . $age . " years old. ");

 ?>

 Step 4: Save your superGlobalsGet.php file again.

 With the sampleForm.html file open in your text editor, go to the document body element, and in the <form> tag, replace the action attribute’s value with “superGlobalsGet.php” and the method attribute value with “get”.

 <body>

 <form action="superGlobalsGet.php" method="get">

 Step 5: Save the modifed file as sampleFormGet.html.

 Step 6: Launch your browser and call your sampleFormGet.html file and display the output.

 Step 7: View your output. This is how the result will look:

 [image:]

 Figure 3.23: Viewing sampleFormGet.html in the browser.
This form uses the “get” method attribute.

 Type the values “John” in the user name textbox and “40” in the user age textbox. Click submit.

 [image:]

 Figure 3.24: Inputting values into a form.

 After clicking the submit button, this is how the output will look:

 [image:]

 Figure 3.25: Viewing the output after clicking the submit button.

 Notice the URL which displays the data the user entered. This string “?userName=John&userAge=40” is appended to the URL.

 [image: superglobalGetOutput.jpg]Figure 3.26: Displaying the user’s information in the URL.

 Let’s go through the same process using the superglobal $_POST.

 Type the following code in your superGlobals.php document then save:

 <?php

 $name=$_POST['userName'];

 $age=$_POST['userAge'];

 ?>

 Add the command to display the following output:

 userName is userAge years old.

 The code to do this is:

 echo($name . " is " . $age . " years old. ");

 The complete code listing should now be:

 <?php

 $name=$_POST['userName'];

 $age=$_POST['userAge'];

 echo($name . " is " . $age . " years old. ");

 ?>

 Save your file as superGlobalsPost.php.

 With the sampleForm.html file in your text editor open, go to the document body tag, and in the <form> tag, replace the action attribute with “superGlobalsPost.php” and the method attribute to “post”.

 <body>

 <form action="superGlobalsPost.php" method="post">

 Save the modifed file as sampleFormPost.html.

 Launch your browser, call the sampleFormPost.html file and display the output.

 Type the values “Fred” in the user name textbox and “20” in the user age textbox. Click submit.

 [image:]Figure 3.27: Inputting values into sampleFormPost.html.

 After clicking the submit button, the output should appear similar to the screenshot below:

 [image:]Figure 3.28: Viewing the output after clicking the submit button.

 Notice the URL is not displaying the information that the user typed in.

 [image:]

 Figure 3.29: URL does not display the user’s information.

 The last superglobal we will discuss is $_REQUEST.

 Type the following code in your superGlobals.php document:

 <?php

 $name=$_REQUEST['userName'];

 $age=$_REQUEST['userAge'];

 ?>

 Add the command to display the following output:

 userName is userAge years old.

 The code to do this is:

 echo($name . " is " . $age . " years old. ");

 The complete code listing should now be:

 <?php

 $name=$_REQUEST['userName'];

 $age=$_REQUEST['userAge'];

 echo($name . " is " . $age . " years old. ");

 ?>

 Save your file as superGlobalsRequest.php.

 With the sampleForm.html file open in your text editor, go to the document body tag, and in the <form> tag, change the action attribute to “superGlobalsRequest.php”. You may use “post” or “get” for the method attribute.

 Either method can be assigned when used in conjunction with the action “request”. For this example, we will pair “request” with “post”. You may use either “get” or “post” as you type this example in to your text editor.

 <body>

 <form action="superGlobalsRequest.php" method="post">

 Save the modifed file as sampleFormRequest.html.

 Launch your browser, call the sampleFormRequest.html file and display the output.

 This is how the result will look when displayed in the browser window:

 [image:]

 Figure 3.30: Viewing sampleFormRequest.html in the browser.

 Type the value “Brandon” in the user name textbox and “30” in the user age textbox. Click submit.

 [image:]

 Figure 3.31: Inputting values into sampleFormRequest.html.

 After clicking the submit button, this is how the output will appear:

 [image:]

 Figure 3.32: Viewing the output after clicking the submit button.

 If you used the method ‘get’ you will notice that the URL displays the information that the user typed in. If you didn’t, you will not see the query string in the URL window.

 In our next example, to demonstrate that information taken from HTML forms can also be mathematically manipulated, we will modify our PHP script so that the value of the user’s age will be increased by two.

 Step 1: Using the sampleForm.html and superGlobals.php files, modify the PHP script so that after the first echo statement the variable $age will be increased by two.

 <?php

 $name = $_POST['userName'];

 $age = $_POST['userAge'];

 echo($name . " is " . $age . " years old.");

 $age += 2;

 echo("</br>Two years from now " . $name . " will be " . $age . " years old.");

 ?>

 Step 2: Save the modified file.

 Step 3: Launch the browser and access sampleForm.html through the localhost.

 Step 4: View your output. This is how the result will look:

 [image:]

 Figure 3.33: Inputting values into sampleForm.html.

 After clicking the submit button, your browser should display a similar result to the following screenshot:

 [image:]

 Figure 3.34: Viewing the output after clicking the submit button.

 [bookmark: _Toc387669585][bookmark: _Toc387669943][bookmark: _Toc387671670][bookmark: _Toc387672012]Chapter Quiz

 1. What are arrays?

 a. Arrays are special variables that can store multiple types of homogeneous data.

 b. Arrays are containers for multiple variables.

 c. Arrays are special commands that get the values of many variables and store them.

 d. Arrays are special functions that create multiple data.

 2. If a member of an array is to be assigned as the fourth member, what should the proper syntax be?

 a. $arrayName[3]=data;

 b. arrayName[3]=data;

 c. $arrayName[4]=data;

 d.arrayName[4]=data;

 3. In the example,

 $example = array(

 "Cooper" => 25000,

 "Oswald" => 23500);

 which is/are the key(s)?

 a. Cooper, Oswald

 b. 25000, 23500

 c. $example

 d. array

 4. What is the simplest explanation for multidimensional arrays?

 a. They are arrays that hold a particular key and associate value in each key.

 b. They are arrays within an array.

 c. They are arrays that have multiple members.

 d. They are arrays that have endless variables.

 5. What is the difference between a simple array and a superglobal array?

 a. Normal arrays are larger than super global arrays.

 b. Superglobal arrays come from the user inputs from the web server, URLs, cookies, and HTML files, while normal arrays are declared by the programmer.

 c. Normal arrays use up less memory than superglobal arrays.

 d. Superglobal arrays are easier to process than normal arrays.

 [bookmark: _Toc387669586][bookmark: _Toc387669944][bookmark: _Toc387671671][bookmark: _Toc387672013]Chapter Lab Exercise:

 [bookmark: _Toc387669587][bookmark: _Toc387669945][bookmark: _Toc387671672][bookmark: _Toc387672014]Lab Exercise 1- Superglobal Single Data Set

 1. Create a PHP program that will display a form and ask for user information—name, age and the current year.

 There must be a submit and a reset button in the form. Once the submit button is clicked, PHP must return a result reporting the approximate year the person was born.

 2. Ensure that the WAMP or MAMP server stack is running.

 3. Create an HTML5 document and save it as yearOfBirth_prediction.html inside the www or htdocs folder.

 4. Adopt the following form layout and form fields: userName, userAge and currentYear. Place these elements in table form for a more organized layout.

 [image:]

 Figure 3.35: Viewing yearOfBirth_prediction.html in the browser.

 Use the maxlength attribute to limit the number of characters of userName to ten, userAge to three, and currentYear to four.

 <table>

 <tr>

 <td>Enter Your Name:</td>

 <td><input name="userName" maxlength="10" /></td>

 </tr>

 <tr>

 <td>Enter Your Age:</td>

 <td><input name="userAge" maxlength="3" /></td>

 </tr>

 <tr>

 <td>Enter the Current Year:</td>

 <td><input name="currentYear" maxlength="4" /></td>

 </tr>

 <tr>

 <td><input type="submit" value="submit" /></td>

 <td><input type="reset" value="clear"</td>

 </tr>

 </table>

 5. Create a new text file and save it as birthYear_calculator.php under your www or htdocs folder.

 6. Compute for the age and type in the codes in the birthYear_calcucator.php file.

 We will use the $_POST superglobal variable here but feel free to tweak the code later using the other two superglobals, $_GET and $_REQUEST.

 <?php

 $name = $_POST['userName'];

 $age = $_POST['userAge'];

 $year = $_POST['currentYear'];

 $yob = $year - $age;

 echo($name . " was approximately born in the year " . $yob. ".");

 ?>

 This is how the output should look:

 [image:]

 Figure 3.36: Viewing yearOfBirth_prediction.html in the browser.

 [image:]

 Figure 3.37: Inputting values into the form.

 After clicking submit, this is how the output will look:

 [image:]

 Figure 3.38: Viewing the output after clicking the submit button.

 [bookmark: _Toc387669588][bookmark: _Toc387669946][bookmark: _Toc387671673][bookmark: _Toc387672015]Lab Exercise 2- Superglobal Multiple Data Set

 1. Create a PHP program that will display a form asking for data input from two individuals—the individuals’ names, ages and then an entry for the current year.

 There must be a submit and a reset button in the form. Once the submit button is clicked, PHP must return a result displaying a list of approximate years the individuals were born.

 2. Use the same HTML5 document used in lab exercise 1 but update the codes in the in the HTML yearOfBirth_prediction.html as follows:

 <table>

 <tr>

 <td>Enter First Person's Name:</td>

 <td><input name="userName1" maxlength="10" /></td>

 </tr>

 <tr>

 <td>Enter First Person's Age:</td>

 <td><input name="userAge1" maxlength="3" /></td>

 </tr>

 <tr>

 <td>Enter Second Person's Name:</td>

 <td><input name="userName2" maxlength="10" /></td>

 </tr>

 <tr>

 <td>Enter Second Person's Age:</td>

 <td><input name="userAge2" maxlength="3" /></td>

 </tr>

 <tr>

 <td>Enter the Current Year:</td>

 <td><input name="currentYear" maxlength="4" /></td>

 </tr>

 <tr>

 <td><input type="submit" value="submit" /></td>

 <td><input type="reset" value="clear"</td>

 </tr>

 </table>

 and in the PHP document birthYear_calculator.php as follows:

 <?php

 $name[0] = $_POST['userName1'];

 $name[1] = $_POST['userName2'];

 $age[0] = $_POST['userAge1'];

 $age[1] = $_POST['userAge2'];

 $year = $_POST['currentYear'];

 $yob[0] = $year - $age[0];

 $yob[1] = $year - $age[1];

 echo($name[0] . " was approximately born in the year " . $yob[0]. ".");

 echo("</br>");

 echo($name[1] . " was approximately born in the year " . $yob[1]. ".");

 echo("</br>");

 ?>

 The output now should provide a form that allows you to enter information for two individuals:

 [image:]

 Figure 3.39: Viewing yearOfBirth_prediction.html in the browser.

 [image:]

 Figure 3.40: Inputting values into the form.

 After clicking submit, this is how the output will look:

 [image:]

 Figure 3.41: Viewing the output after clicking the submit button.

 [bookmark: _Toc387669589][bookmark: _Toc387669947][bookmark: _Toc387671674][bookmark: _Toc387672016]Chapter Lab Solution:

 [bookmark: _Toc387669590][bookmark: _Toc387669948][bookmark: _Toc387671675][bookmark: _Toc387672017]Code Listing: Lab Exercise 1 Solution

 [bookmark: _Toc387669591][bookmark: _Toc387669949][bookmark: _Toc387671676][bookmark: _Toc387672018]yearOfBirth_prediction.html

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Year Of Birth Prediction</title>

 </head>

 <body>

 <form action="birthYear_calculator.php" method="post">

 <table>

 <tr>

 <td>Enter Your Name:</td>

 <td><input name="userName" maxlength="10" /></td>

 </tr>

 <tr>

 <td>Enter Your Age:</td>

 <td><input name="userAge" maxlength="3" /></td>

 </tr>

 <tr>

 <td>Enter the Current Year:</td>

 <td><input name="currentYear" maxlength="4" /></td>

 </tr>

 <tr>

 <td><input type="submit" value="submit" /></td>

 <td><input type="reset" value="clear"</td>

 </tr>

 </table>

 </form>

 </body>

 </html>

 [bookmark: _Toc387669592][bookmark: _Toc387669950][bookmark: _Toc387671677][bookmark: _Toc387672019]birthYear_calculator.php

 <?php

 $name = $_POST['userName'];

 $age = $_POST['userAge'];

 $year = $_POST['currentYear'];

 $yob = $year - $age;

 echo($name . " was approximately born in the year " . $yob. ".");

 ?>

 [bookmark: _Toc387669593][bookmark: _Toc387669951][bookmark: _Toc387671678][bookmark: _Toc387672020]Code Listing: Lab Exercise 2 Solution

 [bookmark: _Toc387669594][bookmark: _Toc387669952][bookmark: _Toc387671679][bookmark: _Toc387672021]yearOfBirth_prediction.html

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Year Of Birth Prediction</title>

 </head>

 <body>

 <form action="birthYear_calculator.php" method="post">

 <table>

 <tr>

 <td>Enter First Person's Name:</td>

 <td><input name="userName1" maxlength="10" /></td>

 </tr>

 <tr>

 <td>Enter First Person's Age:</td>

 <td><input name="userAge1" maxlength="3" /></td>

 </tr>

 <tr>

 <td>Enter Second Person's Name:</td>

 <td><input name="userName2" maxlength="10" /></td>

 </tr>

 <tr>

 <td>Enter Second Person's Age:</td>

 <td><input name="userAge2" maxlength="3" /></td>

 </tr>

 <tr>

 <td>Enter the Current Year:</td>

 <td><input name="currentYear" maxlength="4" /></td>

 </tr>

 <tr>

 <td><input type="submit" value="submit" /></td>

 <td><input type="reset" value="clear"</td>

 </tr>

 </table>

 </form>

 </body>

 </html>

 [bookmark: _Toc387669595][bookmark: _Toc387669953][bookmark: _Toc387671680][bookmark: _Toc387672022]birthYear_calculator.php

 <?php

 $name[0] = $_POST['userName1'];

 $name[1] = $_POST['userName2'];

 $age[0] = $_POST['userAge1'];

 $age[1] = $_POST['userAge2'];

 $year = $_POST['currentYear'];

 $yob[0] = $year - $age[0];

 $yob[1] = $year - $age[1];

 echo($name[0] . " was approximately born in the year " . $yob[0].".");

 echo("</br>");

 echo($name[1] . " was approximately born in the year " . $yob[1].".");

 echo("</br>");

 ?>

 [bookmark: _Toc387669596][bookmark: _Toc387669954][bookmark: _Toc387671681][bookmark: _Toc387672023]Chapter Summary:

 In this chapter we talked about arrays. You learned that there are two types of PHP arrays: simple or indexed arrays and associative arrays. You learned that multidimensional arrays are arrays within arrays and PHP provides access to globally scoped associative arrays named superglobal arrays.

 We listed the nine immediately available superglobal variables and discussed three of them: $_GET, $_REQUEST, and $_POST. The other six superglobal variables can only be run and tested on a remote server.

 In the next chapter, we will be discussing PHP conditionals.

 [bookmark: _Toc387671682][bookmark: _Toc387672024]4: Control Structures - Branching

 [bookmark: _Toc387669597][bookmark: _Toc387669955]Chapter Objectives:

 	You will learn the precise definitions of and study examples of expressions, conditional expressions, operands, operators, comparison operators and logical operators.

 	You will be able to understand and analyze the branching control structures used in PHP.

 	You will be able to understand the differences among the conditional statements used in PHP branching control structures.

 	You will learn about the ternary operator and use it to write compact PHP code.

 	You will apply the conditional statements and branching control structures in various PHP scripts.

 [bookmark: _Toc387669598][bookmark: _Toc387669956][bookmark: _Toc387671683][bookmark: _Toc387672025]4.1 Simple Control Structure—If Statement

 In computer programming, a control structure allows you to alter the flow of execution of your program statements. Instead of a line after line, sequential flow of execution, you can have the program:

 a. skip specific lines or blocks of code (branching), or

 b. repeatedly execute a group of lines or blocks of code (looping).

 The program performs these branching or looping actions by evaluating conditional expressions to either TRUE or FALSE.

 We tackle branching control structures in this chapter while looping control structures will be the subject of Chapter 5.

 A branching control structure consists of:

 a. a conditional expression and a clearly defined block of code, or b. several conditional expressions and several clearly defined blocks of code.

 Any of these blocks of code or none at all will be executed based on whether the conditional expression evaluates to TRUE or FALSE.

 TIP: A block of code consists of one or any number of program statements delimited by curly brackets {}. If there is only one statement in the block of code, the curly brackets are not required. However, for the purposes of clarity and readability, curly brackets are always used.

 Let’s take the simplest branching control structure, the if-statement. Its syntax is:

 If (conditional-expression) {

 statements . . .

 }

 Statements after if-statement. . .

 If the conditional-expression, when evaluated, results in the Boolean value TRUE, then the block of statements enclosed by the curly brackets will be executed. Otherwise, (meaning if evaluating the conditional-expression resulted in the Boolean value FALSE) the block of statements will be ignored and program execution will skip to the if-statement right after the if-statement’s code block.

 Now, let’s examine conditional expressions. First we must understand what an expression is.

 In PHP, an expression is any valid combination of variables, constants, literals, operators, objects and even functions that can be evaluated to produce a value. This value can be any of the eight PHP data types: integers, floating-point numbers, strings, booleans, arrays, objects, resources (or handles) and null.

 How do you evaluate an expression? The simplest and most used method is to place the expression on the right-hand side of an assignment statement:

 $variable = expression

 When this assignment statement is executed, the expression on the right-hand side will be evaluated and its value stored in $variable on the left-hand side. By using a variable to store the result of evaluating an expression, you can use that value later on at any point of your program.

 Now, all expressions consist of at least one operand and one or more operators.

 An operator is a symbol that specifies a particular action to be performed. This action usually results in a new value.

 An operand is what receives the action of an operator. Most of the time, an operand is a variable but it could also be a literal, an object, a function or anything that an operator can validly perform its action on.

 TIP: PHP operators can be classified into ten groups, namely: arithmetic, array, assignment, bitwise, comparison, error control, execution, logical, string, and incrementing/decrementing.

 The simplest expressions are literal values and variables. These are expressions that consist of only one operand and no operators. Literal values as expressions evaluate to themselves and variables evaluate to the values stored in them.

 TIP: A literal value is a single value expressed by its actual string value (i.e. not referenced by a variable). For example, 1, 1.414 and "string" are literal values.

 Let’s take the expression:

 $days++

 It consists of the increment operator ++ and the operand $days which is a variable. The increment operator adds 1 to its operand. So, if the value stored in $days is 7, then when you evaluate this expression, it will return 8 which is the value now stored in $days.

 Here’s another expression:

 $cost + $margin

 It consists of two operands: the variables $cost and $margin and the addition operator, +. This expression will add the values stored in the variables $cost and $margin. For this expression to be of any use, it has to be part of an assignment statement, such as:

 $sellingPrice = $cost + $margin

 Now, the result of evaluating the expression on the right-hand side of the preceding assignment statement is stored in the variable $sellingPrice.

 Here is an example of an expression without an operator:

 strtoupper($str)

 This expression consists of the string function strtoupper and the variable $str. The function strtoupper converts all characters of a string to uppercase. If the value stored in $str were the string “LearnTo” then strtoupper($str) would return “LEARNTO”. The original contents of $str would be unchanged, therefore if you want to make use of the modified string “LEARNTO” you would have to place the expression strtoupper($str) in an assignment statement:

 $newstr = strtoupper($str)

 Now, expressions that evaluate to either of the Boolean values TRUE and FALSE are known as conditional expressions. Moreover, conditional expressions specifically use the comparison and logical operators.

 Comparison operators let you compare two operands in various ways in a conditional expression. If the comparison test is successful, the conditional expression evaluates to TRUE; otherwise, it evaluates to FALSE.

 The following table lists the different PHP comparison operators and their descriptions when used in PHP.

 	 Operator

 	 Example

 	 Result

 	 == (equal)

 	 $LS == $RS

 	 TRUE if the operand stored in $LS is equal to the operand stored in $RS; FALSE otherwise.

 	 != or <>
 not equal to

 	 $LS != $RS or
 $LS <> $RS

 	 TRUE if the operand stored in $LS does not equal the operand stored in $RS; FALSE otherwise.

 	 ===
 (identical)

 	 $LS === $RS

 	 TRUE if the operand stored in $LS is not only equal to the operand stored in $RS but also of the same type; FALSE otherwise.

 	 !==
 (identical)

 	 $LS !== $RS

 	 TRUE if the operand stored in $LS is not only equal to the operand stored in $RS but also of the same type; FALSE otherwise.

 	 >
 (greater than)

 	 $LS > $RS

 	 Tests if the operand on the left side of the operator is greater than the operand on the right side of the operator.

 	 less than
 <

 	 $LS < $RS

 	 Tests if the operand on the left side of the operator is less than the operand on the right side of the operator

 	 greater than
 >=
 or equal to

 	 $LS >= $RS

 	 Tests if the operand on the left side of the operator is greater than or equal to the operand on the right side of the operator

 	 less than
 <=
 or equal to

 	 $LS <= $RS

 	 Tests if the operand at the left side of the operator is less than or equal to the operand at the right side of the operator

 Logical operators allow you to combine conditional expressions to produce a Boolean result of either TRUE or FALSE.

 	 Operator

 	 Example

 	 Result

 	 AND

 	 exp1 AND exp2

 	 TRUE only if both exp1 and exp2 evaluate to TRUE; FALSE otherwise.

 	 &&

 	 exp1 && exp2

 	 OR

 	 exp1 OR exp2

 	 TRUE if either exp1 and exp2 evaluate to TRUE or both exp1 and exp2 are TRUE; FALSE only if both exp1 and exp2 are FALSE.

 	 ||

 	 exp1 || exp2

 Now let’s examine some conditional expressions.

 The first is a very simple PHP conditional expression:

 $age <= 21.

 It consists of the variable $age, the comparison operator <= (less than or equal to) and the integer value 21. This will yield TRUE if the value of the variable $age ranges from 21 to any values less than 21. If the value of the variable $age is greater than 21, then that conditional expression will yield FALSE.

 The second example is not so simple:

 $char >=”A” and $char<=”Z”.

 This will yield TRUE if the variable $char stores any of the uppercase characters from “A” to “Z”.

 The last is a complex conditional expression:

 ((($year % 4 == 0) && ($year % 100 != 0)) || ($year % 400 == 0))

 This will return true if the value stored in $year is a leap year, false if otherwise.

 Now that we covered the definitions and studied examples of expressions, conditional expressions, operands, operators, comparison operators and logical operators, we look at PHP’s conditional statements.

 PHP has three basic conditional statements that you can use to create branching control structures:

 a. The if-statement,

 b. The if-else- and if-elseif-statements, and

 c. The switch-statement.

 [bookmark: _Toc387669599][bookmark: _Toc387669957][bookmark: _Toc387671684][bookmark: _Toc387672026]4.2 If-Statement

 If-statements evaluate a conditional expression. If it is TRUE, the code block following the if-statement is executed. Otherwise, the code block is ignored. In both cases of either TRUE or FALSE, execution then proceeds to the statement right after the code block.

 The syntax for the if-statement is:

 if (conditional expression){

 code block of statements . . .

 }

 Statements after if

 Let’s work on an example.

 Problem: Create a short PHP program that will determine if a person is eligible to vote based on the following information.

 	 Variable Name

 	 Value

 	 Type

 	 $age

 	 19

 	 Integer

 	 $isCitizen

 	 TRUE

 	 Boolean

 Solution:

 Step 1: Create a new HTML5 document. Include the opening and closing PHP tags in the document <body>. Name your document conditionals.php. Refer to the accompanying images for your guide.

 [image:]

 Figure 4.1: Komodo Edit start page.

 [image:]

 Figure 4.2: Opening a new HTML5 document.

 [image:]

 Figure 4.3: Adding opening and closing PHP tags to the document.

 Step 2: Declare and initialize the variables:

 	 Variable Name

 	 Value

 	 Data Type

 	 $age

 	 19

 	 Integer

 	 $isCitizen

 	 TRUE

 	 Boolean

 <?php

 $age = 19;

 $isCitizen = TRUE;

 ?>

 Refer to the variable assignment table given in Step 2. The third column indicates the “data type” of the values that will be assigned to variables $age and $isCitizen.

 Variable $age is assigned an integer data type of 19.

 Variable $isCitizen is assigned a Boolean data type of TRUE.

 Step 3: After declaring and assigning the variables, input the conditional expression of the if-statement, as follows:

 If ($age>=18 && $isCitizen==TRUE)

 Then the next statement that follows the if-statement is the code block that will execute if the conditional expression is evaluated as true:

 {

 print ("You are eligible to vote");

 }

 Step 4: Your final code listing should now be:

 <!DOCTYPE html>

 <html>

 <head>

 <title>Conditionals</title>

 </head>

 <body>

 <?php

 $age = 19;

 $isCitizen = TRUE;

 if ($age >= 18 && $isCitizen == TRUE)

 {

 print(“You are eligible to vote.”);

 }

 ?>

 </body>

 </html>

 Step 5: Save your file as conditionals.php.

 [image:]

 Figure 4.4: Saving a file in Komodo Edit.

 [image:]

 Figure 4.5: Saving conditionals.php to the www folder.

 Step 6: Make sure that WAMPServer is online and then launch your browser and type the URL http://localhost/conditionals.php in the address bar. Press the enter key so that the server may load and process the URL.

 [image:]

 Figure 4.6: Accessing conditionals.php in the browser via localhost.

 Now, let’s analyze the execution of each line of the script.

 The if-statement will evaluate two conditional expressions, namely:

 (1) If the value stored in $age is greater than or equal to 18.

 Since the actual value stored is 19, the conditional expression ($age >=18) yields a TRUE value.

 (2) If the value stored in $isCitizen is TRUE. Since the actual value stored is TRUE, the conditional expression ($isCitizen ==TRUE) also yields a TRUE value.

 (3) The compound conditional returns TRUE when evaluated. Let’s dissect the whole statement and see.

 	 Expression 1

 	 Compound Operator

 	 Expression 2

 	 Value

 	 if ($age >= 18)

 	 &&

 	 if ($isCitizen ==TRUE)

 	 TRUE && TRUE

 	 TRUE

 	 AND

 	 TRUE

 	 TRUE

 Since the conditional yielded TRUE when tested, then the next statement, which is:

 {

 print ("You are eligible to vote");

 }

 is executed, and will display the output.

 [image:]

 Figure 4.7: Outputting a compound conditional in the browser.

 Let’s see how the output will change if we store new values in the variables $age and $isCitizen.

 Problem: We change the values of the variables as follows:

 	 Variable Name

 	 Value

 	 Type

 	 $age

 	 17

 	 Integer

 	 $isCitizen

 	 FALSE

 	 Boolean

 Solution:

 Step 1: With your text editor still open, click on the conditionals.php document tab to reveal the previously encoded program.

 Go to the PHP script portion of the document and change the assigned value of variable $age to 17 and the value of $isCitizen to FALSE. Your code should now look like this:

 <?php

 $age = 17;

 $isCitizen = FALSE;

 if ($age >= 18 && $isCitizen == TRUE)

 {

 print(“You are eligible to vote.”);

 }

 ?>

 Step 2: Save your file. You may choose to overwrite the file by clicking Save or saving it under a different filename using Save As.

 [image:]

 Figure 4.8: Saving a file in Komodo Edit.

 [image:]

 Figure 4.9: Saving the updated conditionals.php file in the www folder.

 I chose to overwrite my existing file by choosing Save from the file menu.

 Step 3: Launch your browser and type in your file’s name in the address bar (in my case, it’s still conditionals.php) and press enter.

 [image:]

 Figure 4.10: Accessing conditionals.php in the browser via localhost.

 Step 4: View your output. This is how your output should look:

 [image:]

 Figure 4.11: Viewing conditionals.php in the browser.

 Notice that the browser displays a blank window. This occurs because the individual conditional expressions that make up the compound conditional expression both yielded FALSE, therefore it will not execute the code block that follows the if-statement. This resulted in a blank browser output.

 Let’s take a look at another example. This time, we will no longer embed the assigned values for age and citizenship inside the PHP code. Instead, the information will be derived from the user by means of a text box for the age, and radio buttons to state whether the user is a citizen or not.

 Problem: Create a simple HTML form that will ask the user to type in their age and will ask them to input their citizenship by clicking the appropriate radio button. Treat the variables as superglobals and use the pre-defined variable $_POST. Name your main HTML document as votersForm.html and the external PHP document as votersEligibility.php.

 Solution:

 Step 1: Create a new HTML5 document. Save the file as votersForm.html. Type in the <title> tag “Enter User Information”, as shown here:

 <title>Enter User Information</title>

 The PHP script tags will not be included because the PHP script will be called externally—as a separate PHP document called by the “action” form attribute within this HTML document.

 For your PHP action script file, assign the document name, votersEligibility.php.

 In the <body> of the HTML document, include the form tag. Set the action attribute value to votersEligibility.php and the method attribute value to post.

 <body>

 <form action="votersEligibility.php" method="post">

 Step 2: Continue working on the HTML code. Lay out the form elements using tables. Using <table> will keep the form more organized and structured, and will prevent the code listing from having excessive <break> tags.

 Your HTML form document will have the following elements in it:

 - an input element for age, with value “userAge”

 - two radio button input elements, one for “Yes” and one for “No”

 - a submit button element with value “Submit”

 In the first table row, <tr>, we’ll ask for the user’s age. The first table datacell,<td>, should display the text “Enter Your Age”.

 <table>

 <tr>

 <td>Enter Your Age</td>

 The second table data cell will contain the input tag with name attribute’s value set to “userAge”.

 <td><input name="userAge" ></td>

 </tr>

 [image:]

 Figure 4.12: Creating a form using a table structure.

 In the second table row, we’ll place the radio buttons. The first table data cell should display the text “Are you a citizen?”

 <tr>

 <td>Are you a citizen?</td>

 The second table data cell will contain the two radio buttons for Yes and No responses.

 <td>

 <input type="radio" name="citizen"
value="true">Yes</input>

 <input type="radio" name="citizen"
value="false">No</input>

 </td>

 </tr>

 In the third table row, place the “submit” button in the only table data cell contained here.

 <tr>

 <td><input type="submit" value="Submit" ></td>

 </tr>

 Step 3: Place the closing tags </table> and </form>, make sure there are the closing </body> and </html> tags as well then save your document.

 </table>

 </form>

 </body>

 </html>

 <!DOCTYPE html>

 <html>

 <head>

 <title>Enter User Information</title>

 </head>

 <body>

 <form action=”votersEligibility.php” method=”post”>

 <table>

 <tr>

 <td>Enter Your Age</td>

 <td><input name=”userAge” ></td>

 </tr>

 <tr>

 <td>Are you a citizen?</td>

 <td><input type=”radio” name=”citizen” value=”true”>Yes</input>

 <input type=”radio” name=”citizen”

 value=”false”>No</input></td>

 </tr>

 <tr>

 <td><input type=”submit” value=”Submit” ></td>

 </tr>

 </table>

 </form>

 </body>

 </html>

 Step 4: View your output. This is how your votersForm.html input page should look:

 [image:]

 Figure 4.13: Viewing votersForm.html in the browser.

 The page displayed is not yet functional. The PHP script will still have to be created to make the program display accordingly.

 Step 5: Create the votersEligibility.php document using your text editor. This is the complete code listing for our PHP script.

 <?php

 $age = $_POST['userAge'];

 $citizen = $_POST ['citizen'];

 if ($age >= 18 && $citizen == "true")

 {

 echo("You are eligible to vote");

 }

 ?>

 Notice the conditional statement

 if ($age >= 18 && $citizen == "true")

 $citizen is tested for the string value “true” and not the Boolean value TRUE. This is because information from the form page, votersEligibiity.php was sent as string data, in particular the Boolean TRUE was converted to the string “true”.

 <?php

 $age = $_POST[’userAge’];

 $citizen = $_POST[‘citizen’];

 if ($age>=18 && $citizen==”true”)

 {

 echo(“You are eligible to vote”);

 }

 ?>

 Make sure you save your file.

 Step 6: Launch your browser and type in the address bar http://localhost/votersForm.html. (Or, simply switch to your browser launched earlier in Step 4.)

 Step 7: In the displayed form, type in 18 for the age and select Yes for the citizen radio button. Click the Submit button. View your output.

 [image:]

 Figure 4.14: Clicking the submit button.

 [image:]

 Figure 4.15: Submitting the form and viewing the output.

 Step 8: Reload the votersForm.html page and change the user information based on the following table. Observe the outputs.

 	 Age

 	 Citizenship

 	 25

 	 Yes

 	 15

 	 Yes

 	 25

 	 No

 	 15

 	 No

 Ensure the results you get are correct according to the program logic.

 [bookmark: _Toc387669600][bookmark: _Toc387669958][bookmark: _Toc387671685][bookmark: _Toc387672027]4.3 If-else- and if-elseif- Statements

 The simple if-statement provides one code block which is to be executed if the if-statement’s conditional expression evaluates to TRUE. In contrast, the if-else-statement provides two code blocks. One is to be executed if the conditional expression returns TRUE, the other if the conditional expression returns FALSE. This is the structure and syntax of the if-else-statement.

 if (conditional expression){

 code block of statements for TRUE . . .

 } else {

 code block of statements for FALSE . . .

 }

 Statements after if

 Let’s work on an example:

 Problem:

 Refer to the first version of our previous example, conditionals.php, where the PHP scripts were embedded in the HTML document. We will modify this to include an else statement that will state “You are not eligible to vote.” when the condition yields FALSE.

 Use the following default values for the variables $age and $isCitizen:

 	 Variable Name

 	 Value

 	 Type

 	 $age

 	 19

 	 Numeric

 	 $isCitizen

 	 TRUE

 	 Boolean

 Solution:

 Step 1: Create a new HTML5 document.

 Type in the basic HTML document structure and make sure you include the opening and closing PHP tags in the document <body>. Name your document conditionals_ifElse.php

 [image:]

 Figure 4.16: Basic HTML document structure, including PHP tags.

 Step 2: Place the text “Complex Conditionals” inside the title element and then complete the PHP code listing by including the else clause after the last command line of the if-clause as follows:

 <?php

 $age = 21;

 $iscitizen = false;

 if ($age >= 18 && $citizen == true)

 {

 print("<h1>You are eligible to vote</h1>");

 }

 else

 {

 print("You are not eligible to vote");

 }

 ?>

 Close the PHP script tag and make sure the HTML closing tags are present in the document as well. Save your file.

 Step 3: Launch your browser and type http://localhost/conditionals_ifElse.php into the address bar. Click Go to or simply press the Enter key.

 [image:]

 Figure 4.17: Accessing conditionals_ifElse.php in the browser via localhost.

 Step 4: Wait a few seconds and view your output.

 [image:]

 Figure 4.18: Outputting conditionals_ifElse.php in the browser.

 You got the result “You are not eligible to vote.” because the variable $citizen contains the Boolean value FALSE.

 Here is the complete code listing for the example shown:

 [bookmark: _Toc387669601][bookmark: _Toc387669959][bookmark: _Toc387671686][bookmark: _Toc387672028]Code Listing: Solution for conditionals_ifElse.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Complex Conditional</title>

 </head>

 <body>

 <?php

 $age = 21;

 $citizen = true;

 if ($age >= 18 && $citizen == true)

 {

 print("<h1>You are eligible to vote.</h1>");

 }

 else

 {

 print("You are not eligible to vote.");

 }

 ?>

 </body>

 </html>

 Step 5: Reload the conditionals_ifElse.php and change the user information based on the following table.

 	 Age

 	 Citizenship

 	 21

 	 TRUE

 	 16

 	 TRUE

 	 21

 	 FALSE

 	 16

 	 FALSE

 Step 6: View your output after each entry and ensure that the result is correct.

 The if-statement and the if-else-statement test only one conditional expression. In contrast, the if-elseif-statement tests more than one conditional expression.

 The if-statement has one code block, the if-else-statement has two code blocks while the if-elseif-statement has as many code blocks as it has conditional expressions.

 This is the syntax for the if-elseif-statement.

 if (condexpr0){

 code block for condexpr0 == TRUE . . .

 } elseif (condexpr1) {

 code block for condexpr1 == TRUE . . .

 } elseif (condexpr2) {

 code block for condexpr2 == TRUE . . .

 } else {

 code block if all conditional expressions are FALSE

 }

 Statements after if-elseif

 Three things to note about the if-elseif-statement:

 a. The else clause is optional.

 b. If any of the evaluated conditional expressions are TRUE, the code block for that conditional expression is executed and then control jumps to the first statement after the if-elseif-statement.

 c. If none of the if-elseif-statement’s conditional expressions evaluates to TRUE, then the code block associated with the else clause (if present) is executed.

 Let’s work on an example.

 Problem:

 Create a program routine that will display a description of a numerical grade value based on the value identified. The PHP scripts must be embedded within the HTML document. Use the variable name $grade to hold the values for the numerical grades. Set the default grade to 93.

 Use the following grades description table. Save the document under the filename complexConditionals_2.php.

 	 Condition

 	 Message

 	 $grade == 100

 	 Your grade is perfect!

 	 $grade > 90

 	 Your grade is excellent!

 	 $grade > 80

 	 Your grade is great!

 	 $grade > 70

 	 Your grade is good!

 	 $grade >= 60

 	 Your grade is average.

 	 $grade <=50

 	 Your grade is below average.

 	 else

 	 Either your grade is super low or you entered an invalid grade :(

 Solution:

 [bookmark: _Toc387669602][bookmark: _Toc387669960][bookmark: _Toc387671687][bookmark: _Toc387672029]Code Listing: Solution for complexConditionals_2.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Complex Conditionals 2</title>

 </head>

 <body>

 <?php

 $grade = 93;

 if ($grade == 100)

 {

 echo("Your grade is PERFECT!");

 }

 elseif($grade <=99 && $grade>=90)

 {

 echo("Your grade is Excellent!");

 }

 elseif($grade <= 89 && $grade>=80)

 {

 echo("Your grade is Great!");

 }

 elseif($grade <= 79 && $grade>=70)

 {

 echo("Your grade is Good");

 }

 elseif($grade <= 69 && $grade>=60)

 {

 echo("Your grade is Average");

 }

 elseif($grade <= 59 && $grade>=50)

 {

 echo("Your grade is Below Average");

 }

 else

 {

 echo("You entered an invalid grade :(");

 }

 ?>

 </body>

 </html>

 Step 1: Create a new HTML5 document. Save your document as complexConditionals-2.php.

 [image:]

 Figure 4.19: Komodo Edit start page.

 [image:]

 Figure 4.20: Saving a new document as complexConditionals_2.php.

 Type in the <title> tag “Complex Conditionals 2”. Include the opening and closing PHP tags in the document <body>.

 [image:]

 Figure 4.21: Adding a title and PHP tags to the document.

 Step 2: Assign the value 93 as the initial value for $grade. Encode the entire code solution and save your file again.

 <!DOCTYPE html>

 <html>

 <head>

 <title>Complex Conditionals 2</title>

 </head>

 <body>

 <?php

 $grade = 93;

 if ($grade == 100)

 {

 echo("Your grade is PERFECT!!!");

 }

 elseif($grade <=99 && $grade>=90)

 {

 echo("Your grade is Excellent!");

 }

 elseif($grade <= 89 && $grade>=80)

 {

 echo("Your grade is Great!");

 }

 elseif($grade <= 79 && $grade>=70)

 {

 echo("Your grade is Good");

 }

 elseif($grade <= 69 && $grade>=60)

 {

 echo("Your grade is Average");

 }

 elseif($grade <= 59 && $grade>=50)

 {

 echo("Your grade is Below Average");

 }

 else

 {

 echo("You entered an invalid grade :(");

 }

 ?>

 </body>

 </html>

 Step 3: Launch your browser, type the filename in the address bar and click Go to or press the enter key. Wait a second or two.

 [image:]

 Figure 4.22: Accessing complexConditionals_2.php in the browser.

 Output:

 Step 4: View your output.

 [image:]

 Figure 4.23: Viewing the output of complexConditionals_2.php.

 Modify the given value:

 Step 5: Changing the values of $grade will yield different results.

 	 Grade

 	 Expected Output Message

 	 95

 	 Your grade is excellent!

 	 100

 	 Your grade is perfect!

 	 72

 	 Your grade is good!

 	 45

 	 Your grade is below average.

 	 88

 	 Your grade is great!

 	 66

 	 Your grade is average.

 	 A

 	 You entered an invalid grade :(

 Step 6: View the output.

 Grade = “95”

 [image:]

 [image:]

 Figure 4.24: Changing the value of $grade to 95 and viewing the output.

 Grade = “100”

 [image:]

 [image:]

 Figure 4.25: Changing the value of $grade to 100 and viewing the output.

 Grade = “72”

 [image:]

 [image:]

 Figure 4.26: Changing the value of $grade to 72 and viewing the output.

 Grade = “45”

 [image:]

 [image:]

 Figure 4.27: Changing the value of $grade to 45 and viewing the output.

 Grade = “A”

 [image:] [image:]Figure 4.28: Changing the value of $grade to “A” and viewing the output.

 [bookmark: _Toc387669603][bookmark: _Toc387669961][bookmark: _Toc387671688][bookmark: _Toc387672030]4.4 Switch Statement

 The switch-statement is ideal for those situations where a variable or expression has to be tested against a range of different values. This is the structure and syntax of the switch-statement:

 switch ($variable) {

 case value1:

 statements for value1. . .

 break;

 case value2:

 statements for value2. . .

 break;

 default:

 statements for default. . .

 }

 statements after switch

 The first line begins with the switch keyword followed by the name of the test variable in parentheses, $variable, whose values are to be tested.

 The case keyword defines the program statements to be executed if the value following the case keyword matches the current value of $variable, the test variable.

 The break keyword terminates the switch-statement. Why is the break statement needed? When a case value matches the test variable’s current value, the statements for that case value are executed. After this, the program continues down the switch-statement, executing the statements of all the other case values, as well as the default case, whether those values match the test variable or not! Clearly, we don’t want this to happen which is why we include the break statement as the last statement for a case value’s associated statements.

 The default keyword defines statements to be executed if none of the case values match the test variable.

 Let’s work on an example.

 Problem: Create a switch-statement routine that will determine the numerical grade bracket a letter grade corresponds to, and display the grade bracket’s description accordingly. Use the following table of grades:

 	 Letter Grade

 	 Output Message

 	 A

 	 A means your grade is from 91 to 100.

 	 B

 	 B means your grade is from 81 to 90.

 	 C

 	 C means your grade is from 71 to 80.

 	 D

 	 D means your grade is from 61 to 70.

 	 F

 	 F means your grade is from 51 to 60.

 	 default

 	 The grade you entered is invalid.

 Solution:

 [bookmark: _Toc387669604][bookmark: _Toc387669962][bookmark: _Toc387671689][bookmark: _Toc387672031]Code Listing: Solution for switchCaseBreakConditional.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Switch-Case-Break Conditionals</title>

 </head>

 <body>

 <?php

 $grade = 'A';

 switch($grade)

 {

 case 'A':

 echo("A means your grade is from 91-100.");

 break;

 case 'B':

 echo("B means your grade is from 81-90.");

 break;

 case 'C':

 echo("C means your grade is from 71-80.");

 break;

 case 'D':

 echo("D means your grade is from 61-70.");

 break;

 case 'F':

 echo("F means your grade is from 51-60.");

 break;

 default:

 echo("The grade you entered is invalid");

 }

 ?>

 </body>

 </html>

 Step 1: Create a blank HTML5 document and save it under the filename switchCaseBreakConditional.php.

 [image:]

 Figure 4.29: Komodo Edit start page.

 [image:]

 Figure 4.30: Creating a new file called switchCaseBreakConditional.php.

 Type in the <title> tag “Switch-Case-Break Conditional”. Include the opening and closing PHP script tags in the document <body>.

 [image:]

 Figure 4.31: Opening a new HTML5 document in Komodo Edit.

 Step 2: Assign the initial value ‘A’ to the variable $grade. Encode the entire code solution and save your file again.

 <!DOCTYPE html>

 <html>

 <head>

 <title>Switch-Case-Break Conditionals</title>

 </head>

 <body>

 <?php

 $grade = 'A';

 switch($grade)

 {

 case 'A':

 echo("A means your grade is from 91-100.");

 break;

 case 'B':

 echo("B means your grade is from 81-90.");

 break;

 case 'C':

 echo("C means your grade is from 71-80.");

 break;

 case 'D':

 echo("D means your grade is from 61-70.");

 break;

 case 'F':

 echo("F means your grade is from 51-60.");

 break;

 default:

 echo("The grade you entered is invalid");

 }

 ?>

 </body>

 </html>

 Step 3: Launch your browser, type the filename in the address bar and click Go or press the enter key. Wait a second or two.

 [image:]

 Figure 4.32: Accessing switchCaseBreakConditional.php in the browser.

 Output:

 Step 4: View your output.

 If $grade = ‘A’

 [image:]

 Figure 4.33: Viewing the output of switchCaseBreakConditional.php.

 Modify the assigned value:

 Step 5: Replace the values of $grade with B, C, D and F and see the results.

 	 Grade

 	 Expected Output Message

 	 $grade = ‘A’

 	 A means your grade is from 91-100.

 	 $grade = ‘B’

 	 B means your grade is from 81-90.

 	 $grade = ‘C’

 	 C means your grade is from 71-80.

 	 $grade = ‘D’

 	 D means your grade is from 61-70.

 	 $grade = ‘F’

 	 F means your grade is from 51-60.

 	 $grade = ‘a’

 	 The grade you entered is invalid.

 	 $grade = ‘E’

 	 The grade you entered is invalid.

 Step 6: View the output.

 If $grade = ‘B’

 [image:]

 Figure 4.34: Changing the value of $grade to ‘B’ and viewing the output.

 If $grade = ‘C’

 [image:]

 Figure 4.35: Changing the value of $grade to ‘C’ and viewing the output.

 If $grade = ‘D’

 [image:]

 Figure 4.36: Changing the value of $grade to ‘D’ and viewing the output.

 If $grade = ‘F’

 [image:]

 Figure 4.37: Changing the value of $grade to ‘F’ and viewing the output.

 Replace $grade with a value outside of the typical range, say ‘a’ and ‘E’. Take note of the result.

 If $grade = ‘a’

 [image:]

 Figure 4.38: Changing the value of $grade to ‘a’ and viewing the output.

 If $grade = ‘E’

 [image:]

 Figure 4.39: Changing the value of $grade to ‘E’ and viewing the output.

 We mentioned that the switch-statement is case sensitive and this is proven true if you tried assigning either “a”, “b”, “c”, “d” or “f” to the variable $grade. Assigning any of these lowercase grades will cause the program to report the grade as invalid.

 The switch-statement can overcome this limitation by adding another case after the first case listed. This is how it is done. If we want both characters ‘A’ and ‘a’ to be treated as the same grades, then we must declare two successive cases:

 case 'A':

 case 'a':

 action

 break;

 This goes inside the basic switch-case-break structure, like this:

 <?php

 $variable = value;

 switch($variable)

 {

 case ‘A’:

 case ‘a’:

 action;

 break;

 default:

 default action;

 }

 ?>

 In this structure, the program will look at the variable’s value. It will test if the value is equal to ‘A’, if not, it will look for a break statement. Since there is none, it will continue to test and this time see if the value is equal to ‘a’—all because of the next case ‘a’ statement that followed. If the value is equal to ‘a’, then the following action is performed. This resolves the case sensitivity issue of switch-case-break conditional.

 However, this case series is ideal only for a maximum of three cases. If there are already more than three cases to put in series, then the more practical tool to use is an if-else statement having multiple conditions and including an OR logical operator.

 To reinforce this discussion, we’ll apply the case series in the previous example, switchCaseBreakConditional.php, to make sure the program routine will catch both uppercase and lowercase grades assigned to $grade.

 Let’s see what happens to the output of switchCaseBreakConditionals_2.php when the $grade is set to ‘a’ in the code.

 <body>

 <?php

 $grade = 'a';

 Running the program will give the result:

 [image:]

 Figure 4.40: Changing the value of $grade to ‘a’ and viewing the output.

 This is because the existing code does not provide the case for lowercase ‘a’.

 [bookmark: _Toc387669605][bookmark: _Toc387669963]Problem: Tweak the code for switchCaseBreakConditional.php so that it will now include a case for the lowercase grades ‘a’, ‘b’, ‘c’, ‘d’ and ‘f’. Keep the assigned value for $grade to ‘a’.

 [bookmark: _Toc387669606][bookmark: _Toc387669964]Solution:

 [bookmark: _Toc387669607][bookmark: _Toc387669965][bookmark: _Toc387671690][bookmark: _Toc387672032]Code Listing: Solution for switchCaseBreakConditional_2.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Switch-Case-Break Conditional 2</title>

 </head>

 <body>

 <?php

 $grade = 'a';

 switch($grade)

 {

 case 'A':

 case 'a':

 echo("A means your grade is from 91-100.");

 break;

 case 'B':

 case 'b':

 echo("B means your grade is from 81-90.");

 break;

 case 'C':

 case 'c':

 echo("C means your grade is from 71-80.");

 break;

 case 'D':

 case 'd':

 echo("D means your grade is from 61-70.");

 break;

 case 'F':

 case 'f':

 echo("E means your grade is from 51-60.");

 break;

 default:

 echo("The grade you entered is invalid.");

 }

 ?>

 </body>

 </html>

 Step 1: Create a blank HTML5 document and save it under the filename switchCaseBreakConditional_2.php.

 [image:]

 Figure 4.41: Komodo Edit start page.

 [image:]

 Figure 4.42: Creating a new file called switchCaseBreakConditional_2.php.

 Step 2: Type in the <title> tag “Switch-Case-Break Conditional 2”. Include the opening and closing PHP script tags in the document <body>.

 [image:]

 Figure 4.43: Adding a title and PHP tags to the document.

 Step 3: Assign the initial value, ‘a’, to the variable $grade. Encode the entire code solution given and save your file again.

 <!DOCTYPE html>

 <html>

 <head>

 <title>Switch-Case-Break Conditional 2</title>

 </head>

 <body>

 <?php

 $grade = 'a';

 switch($grade)

 {

 case 'A':

 case 'a':

 echo("A means your grade is from 91-100.");

 break;

 case 'B':

 case 'b':

 echo("B means your grade is from 81-90.");

 break;

 case 'C':

 case 'c':

 echo("C means your grade is from 71-80.");

 break;

 case 'D':

 case 'd':

 echo("D means your grade is from 61-70.");

 break;

 case 'F':

 case 'f':

 echo("E means your grade is from 51-60.");

 break;

 default:

 echo("The grade you entered is invalid.");

 }

 ?>

 </body>

 </html>

 Step 4: Launch your browser, type the filename in the address bar and click Go to or press the enter key. Wait a second or two.

 [image:]

 Figure 4.44: Accessing switchCaseBreakConditional_2.php in the browser.

 Output:

 Step 5: View your output.

 [image:]

 Figure 4.45: Viewing the output of switchCaseBreakConditional_2.php.

 Modify the assigned value:

 Step 6: Replace the values of $grade with the following values and see the results. The first one has been shown previously. Start with the second row’s value, $grade = ‘B’ or $grade = ‘c’.

 	 Grade

 	 Expected Output Message

 	 $grade = ‘A’ or ‘a’

 	 A means your grade is from 91-100.

 	 $grade = ‘B’ or ‘b’

 	 B means your grade is from 81-90.

 	 $grade = ‘C’ or ‘c’

 	 C means your grade is from 71-80.

 	 $grade = ‘D’ or ‘d’

 	 D means your grade is from 61-70.

 	 $grade = ‘F’ or ‘f’

 	 F means your grade is from 51-60.

 	 $grade = ‘X’ or ‘x’

 	 The grade you entered is invalid.

 	 $grade = ‘85’ or ‘Xx’

 	 The grade you entered is invalid.

 Step 7: View the output.

 If $grade = ‘B’ or ‘b’

 [image:] Figure 4.46: Changing the value of $grade to ‘b’ and viewing the output.

 If $grade = ‘C’ or ‘c’

 [image:]

 Figure 4.47: Changing the value of $grade to ‘c’ and viewing the output.

 If $grade = ‘D’ or ‘d’

 [image:]

 Figure 4.48: Changing the value of $grade to ‘d’ and viewing the output.

 If $grade = ‘F’ or ‘f’

 [image:]

 Figure 4.49: Changing the value of $grade to ‘f’ and viewing the output.

 If $grade = ‘X’

 [image:]

 Figure 4.50: Changing the value of $grade to ‘X’ and viewing the output.

 If $grade = ‘x’

 [image:]

 Figure 4.51: Changing the value of $grade to ‘x’ and viewing the output.

 .

 If $grade = ‘85’

 [image:]

 Figure 4.52: Changing the value of $grade to 85 and viewing the output.

 If $grade = ‘Xx’

 [image:]

 Figure 4.53: Changing the value of $grade to ‘Xx’ and viewing the output.

 In summary, the switch-statement offers a simpler and more compact structure than an if-elseif-statement, especially when there are a large number of values, string or numeric, to test against.

 Just don’t forget the break statement at the end of each case code block.

 [bookmark: _Toc387669608][bookmark: _Toc387669966][bookmark: _Toc387671691][bookmark: _Toc387672033]4.5 Ternary Operator—Compact If-Else

 Earlier in this chapter, we discussed operators, in particular comparative and logical operators which are mainly used in conditional expressions. All those operators we presented work on either a single operand (for example: !$isTrue) or on two operands (for example: $a == $b).

 The ternary operator works on three operands or more specifically, three expressions. This is its syntax:

 (conditional-expression1) ? expression2 : expression3

 The preceding ternary expression will return the value of expression2 if conditional-expression1 evaluates to true; otherwise it will return the value of expression3. Most of the time, to make use of the returned value, the ternary expression would be used in an assignment statement in the following manner:

 $variable = (cond-expr1)? expr2 : expr3

 At first, it may be difficult to read code that uses the ternary operator as it is easy to miss the question mark (?) and the colon (:). But, using the ternary expression is a great way to replace an if-else statement that takes up at least four lines with only one line thus resulting in compact code.

 Let’s work on an example.

 Problem: Create a program that will determine if a user’s age is greater than or equal to 18. If it is, then the message “You can vote.” should be displayed. Otherwise, the output must display “You cannot vote.” Use the ternary operator in implementing the program’s logic.

 Solution:

 [bookmark: _Toc387669609][bookmark: _Toc387669967][bookmark: _Toc387671692][bookmark: _Toc387672034]Code Listing: Solution for ternaryOperations.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Ternary Operator</title>

 </head>

 <body>

 <?php

 $age = 19;

 $voteStatus = ($age >= 18) ? "You can vote!" : "You cannot vote!";

 print ($voteStatus);

 ?>

 </body>

 </html>

 Step 1: Create a blank HTML5 document and save it under the filename ternaryOperations.php.

 [image:]

 Figure 4.54: Komodo Edit start page.

 [image:]

 Figure 4.55: Creating a new file called ternaryOperations.php.

 Type in the <title> tag “ternaryOperations.php”. Include the opening and closing PHP script tags in the document <body>.

 [image:]

 Figure 4.56: Adding a title and PHP tags to the document.

 Step 2: Assign the initial value 19 to the variable $age. Encode the entire code solution given and save your file.

 <!DOCTYPE html>

 <html>

 <head>

 <title>Ternary Operator</title>

 </head>

 <body>

 <?php

 $age = 19;

 $voteStatus = $age >= 18) ? “You can vote!” : “You cannot vote!”

 print ($voteStatus . "
You are " . $age . " years old.”);

 ?>

 </body>

 </html>

 Step 3: Launch your browser, type the filename in the address bar and click Go to or press the enter key. Wait a second or two.

 [image:]

 Figure 4.57: Accessing ternaryOperations.php in the browser.

 Output:

 Step 4: View your output.

 [image:]

 Figure 4.58: Viewing the output of ternaryOperations.php.

 Modify the assigned value:

 Step 5: Replace the values of $age with the following values and see the results. The first one has been shown previously. Start with the second row’s value, $age = 60.

 	 Grade

 	 Expected Output Message

 	 $age = 19

 	 You can vote!

 	 $age = 60

 	 You can vote!

 	 $age = 16

 	 You cannot vote!

 Step 6: View the output.

 If $age = 60

 [image:]

 Figure 4.59: Changing the value of $age to 60 and viewing the output.

 If $age = 16

 [image:]

 Figure 4.60: Changing the value of $age to 16 and viewing the output.

 [bookmark: _Toc387669610][bookmark: _Toc387669968][bookmark: _Toc387671693][bookmark: _Toc387672035]Chapter Quiz

 	What are conditionals?

 	Statements that define a condition.

 	Requirements that will be evaluated for nullity of value.

 	Logical statements that can hold any value and be evaluated based on that value.

 	Statements that evaluate an expression condition to be true or false and perform the corresponding action associated with either true or false value.

 	What conditional operator does the condition “<=” depict?

 	Greater than or equal to.

 	Is equal to.

 	Less than.

 	Less than or equal to.

 	What is an example of a complex conditional?

 	If statement.

 	Switch statement.

 	If-else statement.

 	A series of if-else-if statements.

 	 What are switch-case-break conditionals best defined as?

 	A shorthand notation of an if statement.

 	A switch based on a case that breaks apart randomly.

 	A conditional that has many cases.

 	A longer version of an if statement.

 	Is switch-case-break case sensitive?

 	Yes.

 	No.

 	Maybe.

 	By default, yes, but it can be customized by adding multiple cases that would remove the case sensitivity.

 	What are ternary operators?

 	A one line if-else statement associated with a variable.

 	Conditionals that have complex conditions structure.

 	Operators that assign a value to a variable.

 	Operators that evaluate a condition and perform a certain action.

 	What do the symbols (?) and (:) in ternary statements mean, respectively?

 	If and else.

 	OR and AND.

 	Greater than and less than.

 	Plus and minus.

 [bookmark: _Toc387669611][bookmark: _Toc387669969][bookmark: _Toc387671694][bookmark: _Toc387672036]Chapter Lab Exercise:

 1. Create a PHP program that will display a form asking an individual to input their first name, last name, age, and citizenship.

 The form must have text input fields for the first name, last name and age; radio buttons for the yes and no reply for citizenship, and a “Register” and a “Reset” or “Clear Fields” button.

 2. Create an HTML5 document and save it as voter_registration.html inside the www or htdocs folder.

 3. Adopt the following form layout and form fields: voterFirstName, voterLastname, votersAge and isCitizen. Place these elements in table form for a clean look.

 [image:]

 Figure 4.61: Creating a voter registration form with HTML and PHP.

 Use maxlength attribute to limit the number of characters of voterFirstName and voterLastName to 15 and votersAge to three.

 <table>

 <tr>

 <th>

 First Name:

 </th>

 <td>

 <input name="voterFirstName" maxlength="15">

 </td>

 </tr>

 <tr>

 <th>

 Last Name:

 </th>

 <td>

 <input name="voterLastName" maxlength="15">

 </td>

 </tr>

 <tr>

 <th>

 Age:

 </th>

 <td>

 <input name="votersAge" maxlength="3">

 </td>

 </tr>

 <tr>

 <th>

 Citizen:

 </th>

 <td><input type="radio" name="isCitizen" value="true">Yes

 <input type="radio" name="isCitizen" value="false">No</td>

 </tr>

 <tr>

 <td><input type="submit" value="Register"></td>

 <td><input type="reset" value="Clear Fields"></td>

 </tr>

 </table>

 4. Create a new text file and save it as voters_registration.php in your www or htdocs folder.

 5. Determine if the age is greater than or equal to 18. Type the code in your voters_registration.php file. Use $_POST superglobals.

 <?php

 $voterFirstName = $_POST['voterFirstName'];

 $voterLastName = $_POST['voterLastName'];

 $isCitizen = $_POST['isCitizen'];

 $votersAge = $_POST['votersAge'];

 if($votersAge >= 18 && $isCitizen == true)

 {

 print($voterFirstName . " " . $voterLastName . "</br>");

 print($votersAge . " years old.</br>");

 print("Is a citizen.</br>");

 print("You are allowed to vote.");

 }

 else

 {

 print($voterFirstName . " " . $voterLastName . "</br>");

 print($votersAge . " years old.</br>");

 print("Is a citizen.</br>");

 print("You are not allowed to vote.");

 }

 ?>

 6. This is how the output should appear:

 [image:]

 Figure 4.62: Viewing the output of voters_registration.html.

 [bookmark: _Toc387669612][bookmark: _Toc387669970][bookmark: _Toc387671695][bookmark: _Toc387672037]Chapter Lab Solution:

 [bookmark: _Toc387669613][bookmark: _Toc387669971][bookmark: _Toc387671696][bookmark: _Toc387672038]Code Listing: HTML Form

 <!DOCTYPE html>

 <html>

 <head>

 <title>Chapter 4 Lab Exercise</title>

 </head>

 <body>

 <form action="voter_registration.php" method="post">

 <table>

 <tr>

 <th>

 First Name:

 </th>

 <td>

 <input name="voterFirstName" maxlength="15">

 </td>

 </tr>

 <tr>

 <th>

 Last Name:

 </th>

 <td>

 <input name="voterLastName" maxlength="15">

 </td>

 </tr>

 <tr>

 <th>

 Age:

 </th>

 <td>

 <input name="votersAge" maxlength="3">

 </td>

 </tr>

 <tr>

 <th>

 Citizen:

 </th>

 <td><input type="radio" name="isCitizen" value="true">Yes

 <input type="radio" name="isCitizen" value="false">No</td>

 </tr>

 <tr>

 <td><input type="submit" value="Register"></td>

 <td><input type="reset" value="Clear Fields"></td>

 </tr>

 </table>

 </form>

 </body>

 </html>

 [bookmark: _Toc387669614][bookmark: _Toc387669972][bookmark: _Toc387671697][bookmark: _Toc387672039]Code listing: PHP Script

 <?php

 $voterFirstName = $_POST['voterFirstName'];

 $voterLastName = $_POST['voterLastName'];

 $isCitizen = $_POST['isCitizen'];

 $votersAge = $_POST['votersAge'];

 if($votersAge >= 18 && $isCitizen == "true")

 {

 print("You are " . $voterFirstName . " " . $voterLastName . ", " . $votersAge . " years old.</br>");

 print("You are a citizen.</br>");

 print("You are allowed to vote.");

 }

 elseif($votersAge >= 18 && $isCitizen == "false")

 {

 print("You are " . $voterFirstName . " " . $voterLastName . ", " . $votersAge . " years old.</br>");

 print("You are not a citizen.</br>");

 print("You are not allowed to vote.");

 }

 elseif($votersAge < 18 && $isCitizen == "true")

 {

 print("You are " . $voterFirstName . " " . $voterLastName . ", " . $votersAge . " years old.</br>");

 print("You are a citizen.</br>");

 print("You are not allowed to vote.");

 }

 else

 {

 print("You are " . $voterFirstName . " " . $voterLastName . ", " . $votersAge . " years old.</br>");

 print("You are not a citizen.</br>");

 print("You are not allowed to vote.");

 }

 ?>

 [image:]

 Figure 4.63: Viewing the output of voters_registration.html.

 [image:]

 Figure 4.64: Clicking the register button to submit the form.

 [bookmark: _Toc387669615][bookmark: _Toc387669973]After clicking the Register button, this is how the output will look:

 [image:]

 Figure 4.65: Viewing the output of voters_registration.php.

 [bookmark: _Toc387669616][bookmark: _Toc387669974][bookmark: _Toc387671698][bookmark: _Toc387672040]Code Listing: voters_registration.html

 <!DOCTYPE html>

 <html>

 <head>

 <title>Chapter 4 Lab Exercise</title>

 </head>

 <body>

 <form action="voters_registration.php" method="post">

 <table>

 <tr>

 <th>

 First Name:

 </th>

 <td>

 <input name="voterFirstName" maxlength="15">

 </td>

 </tr>

 <tr>

 <th>

 Last Name:

 </th>

 <td>

 <input name="voterLastName" maxlength="15">

 </td>

 </tr>

 <tr>

 <th>

 Age:

 </th>

 <td>

 <input name="votersAge" maxlength="3">

 </td>

 </tr>

 <tr>

 <th>

 Citizen:

 </th>

 <td><input type="radio" name="isCitizen" value="true">Yes

 <input type="radio" name="isCitizen" value="false">No</td>

 </tr>

 <tr>

 <td><input type="submit" value="Register"></td>

 <td><input type="reset" value="Clear Fields"></td>

 </tr>

 </table>

 </form>

 </body>

 </html>

 [bookmark: _Toc387669617][bookmark: _Toc387669975][bookmark: _Toc387671699][bookmark: _Toc387672041]Code Listing: voters_registration.php

 <?php

 $voterFirstName = $_POST['voterFirstName'];

 $voterLastName = $_POST['voterLastName'];

 $isCitizen = $_POST['isCitizen'];

 $votersAge = $_POST['votersAge'];

 if($votersAge >= 18 && $isCitizen == "true")

 {

 print("You are " . $voterFirstName . " " . $voterLastName . ", " . $votersAge . " years old.</br>");

 print("You are a citizen.</br>");

 print("You are allowed to vote.");

 }

 elseif($votersAge >= 18 && $isCitizen == "false")

 {

 print("You are " . $voterFirstName . " " . $voterLastName . ", " . $votersAge . " years old.</br>");

 print("You are not a citizen.</br>");

 print("You are not allowed to vote.");

 }

 elseif($votersAge < 18 && $isCitizen == "true")

 {

 print("You are " . $voterFirstName . " " . $voterLastName . ", " . $votersAge . " years old.</br>");

 print("You are a citizen.</br>");

 print("You are not allowed to vote.");

 }

 else

 {

 print("You are " . $voterFirstName . " " . $voterLastName . ", " . $votersAge . " years old.</br>");

 print("You are not a citizen.</br>");

 print("You are not allowed to vote.");

 }

 ?>

 [bookmark: _Toc387669618][bookmark: _Toc387669976][bookmark: _Toc387671700][bookmark: _Toc387672042]Chapter Summary:

 In this chapter you first learned about expressions and conditional expressions and how they are formed from operands, operators, comparison operators, and logical operators.

 You saw that conditional expressions are the essential components of PHP’s branching control structures and how this structure is implemented by four conditional statements in PHP, namely:

 -the if-statement,

 -the if-else- and if-elseif-statements,

 -the switch-statement,

 -and the ternary operator.

 We also covered multiple examples to fully understand the syntax, structure and implementation of all these conditionals.

 In the next chapter, we will discuss looping control structures.

 [bookmark: _Toc387669619][bookmark: _Toc387669977][bookmark: _Toc387671701][bookmark: _Toc387672043]Chapter 5: Control Structures - Loops

 Chapter Objectives:

 • You will be able to understand and analyze the different looping or iteration control structures in PHP.

 • You will master the syntax and structure of the while-loop, do-while-loop, for-loop, and foreach-loop statements in PHP.

 • You will learn how to use these different loops in actual code.

 In the last chapter, we studied branching control structures where specific code blocks are executed or not executed based on the results of evaluating conditional expressions.

 In this chapter, we study looping control structures, also known as iteration control structures, where we repeatedly execute or iterate through a specific block of code. The results of evaluating conditional expressions will determine the number of times we loop or iterate through a block of code.

 A looping control structure consists of:

 a. a conditional expression, and

 b. a clearly defined block of code.

 This block of code will be repeatedly executed as long as the conditional expression evaluates to TRUE.

 TIP: You should fully understand the concepts of expressions and conditional expressions and how they are formed from operands, operators, comparison operators and logical operators. These concepts were explained in detail with numerous examples in Chapter 4.

 PHP implements the following looping statements to implement iteration control structures.

 a. while-loop

 b. do-while-loop

 c. for-loop

 d. foreach-loop

 [bookmark: _Toc387669620][bookmark: _Toc387669978][bookmark: _Toc387671702][bookmark: _Toc387672044]5.1 While-Loop

 This is the syntax and structure of the while-loop.

 while (conditional expression) {

 code block of statements

 }

 first statement after while-loop

 Program execution of the while-loop begins by evaluating the conditional expression declared at the beginning of the loop. If the evaluated result is TRUE, the code block of statements is executed. Then the conditional expression is evaluated again and as long as the result is TRUE, the code block of statements is executed. Once the conditional expression evaluates to FALSE, the code block is ignored and program execution jumps to the first statement after the while-loop.

 Note that in the code block of statements of the while statement, there must exist some statement(s) that will cause the conditional expression to evaluate to FALSE. For example, if your conditional expression is count < 10, then there must be a statement (for example: count++) in the code block to eventually cause the variable count to take on the value 10 or some other value greater than 10. Otherwise, the loop will never terminate!

 Let’s work on an example:

 Problem: Create a while-loop that will count from one to 10. Each number should be displayed on separate lines. Make sure the initial value for the conditional statement is TRUE. Use the variable name $number.

 Solution:

 Step 1: Create a new HTML5 document. Name it whileLoops_1.php. Save it in your www or htdocs folder.

 [image:]

 Figure 5.1: Opening a new HTML5 document in Komodo Edit.

 Step 2: Type the following program statements in your PHP document.

 [bookmark: _Toc387669621][bookmark: _Toc387669979][bookmark: _Toc387671703][bookmark: _Toc387672045]Code Listing: whileLoops_1.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>While Loop Example 1</title>

 </head>

 <body>

 <?php

 $number = 0;

 while($number < 11) //do while $number is less than 11

 {

 print($number); // display the value of $number

 print("</br>"); // insert a line break

 $number++; // increase the value of $number by 1

 }

 ?>

 </body>

 </html>

 [image:]

 Figure 5.2: Inputting the statements of whileLoops1.php.

 Step 3: Save your file again.

 [image:]

 Figure 5.3: Saving a file in Komodo Edit.

 Step 4: Run your output.

 [image:]

 Figure 5.4: Output of whileLoops_1.php.

 What would happen in the example given if the conditional expression evaluates to FALSE? Try it out and see what happens.

 Step 1: Tweak the variable assignment portion by assigning the value 11 to $number

 <?php

 $number = 11;

 [image:]

 Figure 5.5: Change the initial value of the counter variable $number to 11.

 Step 2: Save your document.

 Step 3: Run your output.

 [image:]

 Figure 5.6: Blank output after changing initial value of $number to 11.

 Nothing was displayed. This is because the conditional expression evaluates to FALSE. This will cause the loop’s code block to be ignored, resulting in a blank page.

 Let’s try another example. This time, we’ll instruct the loop to count by fives.

 Problem: Create a while-loop that will count by fives from zero to 50. Each number should be displayed on separate lines. Make sure the conditional statement’s initial value is TRUE. Use the variable name $number.

 Solution:

 Step 1: Create a new HTML5 document. Name it whileLoops_2.php. Save it under your www or htdocs folder.

 [image:]

 Figure 5.7: Opening a new HTML5 document in Komodo Edit.

 Step 2: Type the following program statements in your PHP document:

 [bookmark: _Toc387669622][bookmark: _Toc387669980][bookmark: _Toc387671704][bookmark: _Toc387672046]Code Listing: whileLoops_2.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>While Loop Example 2</title>

 </head>

 <body>

 <?php

 $number = 0;

 while($number < 51) //do while $number is less than 51

 {

 print($number); // display the value of $number

 print("</br>"); // insert a line break

 $number += 5; // increase the value of $number by 5

 }

 ?>

 </body>

 </html>

 [image:]

 Figure 5.8: Inputting the statements of whileLoops_2.php.

 Step 3: Run your output.

 [image:]

 Figure 5.9: Output of whileLoops_2.php.

 What would happen if the initial condition is set to FALSE? To find out, try doing the following:

 Step 1: Tweak the variable assignment portion by assigning the value 52 to $number.

 <?php

 $number = 52;

 [image:]

 Figure 5.10: Change the initial value of the counter variable $number to 52 in whileLoops_2.php.

 Step 2: Save your document.

 Step 3: Run your output.

 [image:]

 Figure 5.11: Blank output after changing initial value of $number to 52 in whileLoops_2.php.

 As expected, the screen is blank because the conditional expression evaluated to FALSE upon entering the do-while-loop.

 For our third example of a while-loop, let’s retrieve a simple array that has seven elements or members. (Later on in this chapter, we will tackle the foreach-loop which is the best way to retrieve the elements of any array.)

 Problem: Create a while-loop that will read an array consisting of seven members: Kingdom, Phylum, Class, Order, Family, Genus and Species. Each array member must be displayed separately on a line. Use the variable names $taxonomy for the array and $x for the array counter.

 Solution:

 Step 1: Create a new HTML5 document. Name it whileLoops_3.php. Save it under your www or htdocs folder.

 [image:]

 Figure 5.12: Opening a new HTML5 document in Komodo Edit.

 Step 2: Type the following program statements in your PHP document.

 [bookmark: _Toc387669623][bookmark: _Toc387669981][bookmark: _Toc387671705][bookmark: _Toc387672047]Code Listing: whileLoops_3.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>While Loops Example 3</title>

 </head>

 <body>

 <?php

 //This is the array declaration

 $taxonomy = array("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species");

 $x = 0; //Set the array counter to zero

 while($x < count($taxonomy)) /*compare if $x is less than the number of counted array elements*/

 {

 print($taxonomy[$x]); // display the array member($x)

 print("</br>"); // insert a line break

 $x++; // access the next array member

 }

 ?>

 </body>

 </html>

 [image:]

 Figure 5.13: Inputting the statements of whileLoops_3.php.

 Step 3: Save your file again.

 Step 4: Run your output.

 [image:]

 Figure 5.14: Output of whileLoops_3.php.

 [bookmark: _Toc387669624][bookmark: _Toc387669982][bookmark: _Toc387671706][bookmark: _Toc387672048]5.2 Do-While-Loop

 The do-while-loop is just like the while-loop except that the conditional expression is placed at the end of the do-while-loop statement, just after the code block. This is the syntax and structure of the do-while-loop.

 do {

 code block of statements

 } while (conditional expression)

 first statement after do-while-statement

 In the while-loop statement, program execution begins by first evaluating the conditional expression. But in the do-while-loop, program execution begins by first executing the loop’s code block and then evaluating the conditional expression which is at the end of the statement. If the conditional expression evaluates to TRUE then the code block will be executed again. If not, the do-while-loop terminates.

 Let’s modify our first example, whileLoop_1.php, and create a do-while-loop version of that example.

 Problem: Create a program using a do-while-loop that will count from one to ten. Each number should be displayed on separate lines. Use the variable name $number.

 Solution:

 Step 1: Create a new HTML5 document. Name it doWhileLoops_1.php. Save it under your www or htdocs folder.

 [image:]

 Figure 5.15: Opening a new HTML5 document in Komodo Edit.

 Step 2: Type the following program statements in your PHP document.

 [bookmark: _Toc387669625][bookmark: _Toc387669983][bookmark: _Toc387671707][bookmark: _Toc387672049]Code Listing: doWhileLoops_1.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Do-While Loops Example 1</title>

 </head>

 <body>

 <?php

 $number = 1;

 do // Do statement

 {

 print($number); // display the value of $number

 print("</br>"); // insert a line break

 $number++; // increase the value of $number by 1

 }

 while($number < 11) //do while $number is less than 11

 ?>

 </body>

 </html>

 [image:]

 Figure 5.16: Inputting the statements of doWhileLoops_1.php.

 Step 3: Save your file again.

 Step 4: Run your output.

 [image:]

 Figure 5.17: Output of doWhileLoops_1.php.

 The do-while-loop version generated an identical output as the while-loop version.

 What would happen if the conditional expression is initially FALSE?

 Step 1: Modify the assigned value in the conditional statement.

 Step 2: Tweak the variable assignment portion by assigning the value 11 to $number

 <?php

 $number = 11;

 [image:]

 Figure 5.18: Change the initial value of the counter variable $number to 11 in doWhileLoops_1.php.

 Step 3: Save your file.

 Step 4: Run your output.

 [image:]

 Figure 5.19: Output of doWhileLoops_1.php after changing initial value of $number to 11.

 The assigned value—11—to the variable $number caused the conditional expression ($number <11) to evaluate to FALSE. Thus, the loop is terminated. But this evaluation is done at the end of the loop, after the code block had already been unconditionally executed. Thus, we get that single output of 11.

 So when do you use the while-loop or the do-while-loop? That will, of course, depend on the program logic you have to implement. Just remember that in the do-while-loop, its code block will be executed at least once whether or not the statement’s conditional expression evaluates to TRUE or FALSE. In situations where you need this behavior, the do-while-loop is handy.

 [bookmark: _Toc387669626][bookmark: _Toc387669984][bookmark: _Toc387671708][bookmark: _Toc387672050]5.3 For-Loop

 So far, we have studied the while- and do-while- statements, the two simplest PHP iteration structures. A not-so-simple PHP loop and yet compact and powerful iteration structure and a preferred favorite among programmers is the for-loop statement whose structure and syntax is:

 for (set-start; continue-condition; increment){

 // block of code to loop through

 }

 first statement after for-loop

 All the logic and parameters required to control thefor-loop logic are declared in its first line within the parentheses after the for keyword. There are three statements that have to be declared within the parentheses. They have been appropriately labelled set-start, test-condition and increment to denote the essential function of each statement. Note that only the first two statements end with a semi-colon.

 The set-start statement sets the starting value of the loop’s counter variable. The counter variable keeps track of the number of times the loop is executed. How this variable is incremented (or decremented) is set in the increment statement.

 The continue-condition statement declares the conditional expression for the loop’s continued execution. This condition is evaluated at the beginning of each loop. If the evaluated result is TRUE, the loop is executed. Otherwise, the loop terminates.

 The increment statement sets the value by which the counter variable will be incremented (or decremented) for every execution of the loop. Most of the time, this variable is incremented by 1 but any value is allowed, including negative values. The counter variable’s current value lets us know at any time how many iterations the loop has already undergone.

 The for-loop statement is used much more often than the while- and do-while- statements, especially when you know how many times you have to iterate through a code block. The feature that makes the for-loop the preferred iteration structure among programmers is that all the logic required to start, continue and terminate the loop can be directly read from the for-loop’s first line. This is unlike the while- and do-while- loops, where only the conditional expression for those loops’ continued execution is explicitly declared. Thus, in while- and do-while loops, you have to read and search through the code to find what variable (and its initial value) will be used as the loop’s counter and by what value it will be incremented.

 Let’s analyze a simple for-loop that counts from 1 to 10.

 for ($i = 1; $i <= 10; $i++)

 {

 echo ($i . </br>)

 }

 The set-start statement, $i =1, sets the counter variable $i to its starting value 1. $i will be incremented by 1 (as defined in the increment statement, $i++) at the end of every execution of the for-loop’s code block.

 At the very start of the for-loop’s execution, the test-condition $i <=10 is evaluated. This conditional expression will evaluate to TRUE, since the value of $i is 1 at the start of execution. It will evaluate to TRUE for the first 10 iterations of the code block but at the start of the 11th iteration, $i will be 11 thus causing the for-loop to terminate.

 Now let’s study examples of for-loops that display integers by twos, threes and backwards. This will require incrementing and decrementing by values other than 1.

 Problem: Create a for-loop that will count by twos and threes, and then will count backwards by fours from 40 down to four.

 Solution:

 Step 1: Create a new HTML5 file and save it as forLoops_1.php inside your www or htdocs folder.

 [image:]

 Figure 5.20: Opening a new HTML5 document in Komodo Edit.

 Step 2: Input the following program statements.

 [bookmark: _Toc387669627][bookmark: _Toc387669985][bookmark: _Toc387671709][bookmark: _Toc387672051]Code Listing: forLoops_1.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>For-loop Example 1</title>

 </head>

 <body>

 <?php

 echo("Count by twos from 0 to 10:</br>");

 for($i = 0; $i <=10; $i+=2) //count by two's from 0-10

 {

 echo($i . "</br>");

 }

 echo("Count by threes from 0 to 15:</br>");

 for($i = 0; $i <=15; $i+=3) //count by threes from 0-15

 {

 echo($i . "</br>");

 }

 echo("Count backwards by fours from 40 down to 4:</br>");

 for($i = 40; $i >=4; $i-=4) //count backwards by fours from 40 down to 4

 {

 echo($i . "</br>");

 }

 ?>

 </body>

 </html>

 This is how your code will look in Komodo Edit:

 [image:]

 Figure 5.21: Inputting the statements of forLoops_1.php.

 Step 3: Save your file again.

 Step 4: Run your output.

 [image:]

 Figure 5.22: Output of forLoops_1.php

 [bookmark: _Toc387669628][bookmark: _Toc387669986][bookmark: _Toc387671710][bookmark: _Toc387672052]5.4 Foreach-Loops

 The foreach-loop statement is a modified for-loop statement that works only on arrays and objects. It won’t work with any other data type. (Objects will be studied in Chapter 10.) The purpose of the foreach-loop is to make it easy to consecutively retrieve the elements of any type of array.

 TIP: Arrays were presented in Chapter 3 and it is vital that you clearly understand the differences between indexed (or simple) arrays, associative arrays and multi-dimensional arrays. You should know how to create any of those arrays, how to populate them, and how to reference and retrieve their members.

 When used to iterate over the members of an indexed or simple array, the structure and syntax of the foreach-loop statement is:

 foreach($arrayName as $elementValue) {

 block of code

 }

 When used to iterate over the members of an associative array, the structure and syntax of the foreach-loop statement is:

 foreach($arrayName as $keyValue => $elementValue) {

 block of code

 }

 $arrayName is the name of the array whose elements you want to access.

 $keyValue stores the value of the key of the current array element.

 $elementValue stores the value of the current array element.

 Notice that there is no need to define a counter variable and set its initial and incrementing value, nor is there a need to define a conditional expression. The foreach-loop will automatically and consecutively step through all memory locations or indices of an array (whether they store elements or not).

 Now, before we go into some examples, let’s preview two concerns regarding accessing an array’s elements through the foreach-loop. These two concerns will be discussed in detail in the next chapters but for now you should at least be aware of them.

 First, the foreach-loop will return copies (variables $keyValue and $elementValue) of the array’s elements. You can use these variables just as you would use any other variable. You could also assign new values to them. But assigning new values to $keyValue or to $elementValue will not affect the array elements since these two variables are just copies of the values of the array elements. In another chapter, we will discuss how to modify the elements of an array through the foreach-loop.

 The second concern deals with arrays with empty memory locations. We have kept things simple by dealing with fully populated arrays but in real life using the foreach-loop to access an array’s elements always includes code that assumes that the array will have empty memory locations. This will be discussed in detail in later chapters.

 Now, let’s study an example of using the foreach-loop on an array.

 Problem: Create an associative array that contains the first names of seven people and their corresponding GPAs as shown in the following table.

 	 First Names

 	 GPA

 	 Adam

 	 4.00

 	 Ervin

 	 3.75

 	 Erin

 	 3.9

 	 Jim

 	 3.59

 	 Eric

 	 3.0

 	 Duane

 	 2.11

 	 Sally

 	 Not given

 Solution:

 Step 1: Create a new HTML5 document and save it in the www folder with the filename foreachLoops_1.php. Use the array variable name $gpas.

 [image:]

 Figure 5.23: Opening a new HTML5 document in Komodo Edit.

 Step 2: Input the following program statements.

 Declare the array as follows:

 <?php

 $gpas;

 $gpas["Adam"] = 4.0;

 $gpas["Ervin"] = 3.75;

 $gpas["Erin"] = 3.9;

 $gpas["Jim"] = 3.59;

 $gpas["Eric"] = 3.0;

 $gpas["Duane"] = 2.11;

 $gpas["Sally"] = "Not given";

 ?>

 The foreach-loop routine should look like:

 foreach ($gpas as $key => $value)

 {

 print("Name: " . $key);

 print("
GPA: " . $value);

 print("
");

 }

 This is the complete code listing:

 [bookmark: _Toc387669629][bookmark: _Toc387669987][bookmark: _Toc387671711][bookmark: _Toc387672053]Code Listing: foreachLoops_1.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Foreach Loop Example 1</title>

 </head>

 <body>

 <?php

 $gpas;

 $gpas["Adam"] = 4.0;

 $gpas["Ervin"] = 3.75;

 $gpas["Erin"] = 3.9;

 $gpas["Jim"] = 3.59;

 $gpas["Eric"] = 3.0;

 $gpas["Duane"] = 2.11;

 $gpas["Sally"] = "Not given";

 foreach ($gpas as $key => $value)

 {

 print("Name: " . $key);

 print("
GPA: " . $value);

 print("
");

 }

 ?>

 </body>

 </html>

 [image:]

 Figure 5.24: Inputting the statements of foreachLoops_1.php

 Step 3: Save your file.

 Step 4: Run your output.

 [image:]

 Figure 5.25: Output of foreachLoops_1.php.

 Problem: Create a variation in the output layout so that the names fall in the first column and the respective GPAs are displayed across from each name.

 Solution:

 Step 1: Modify the code and place the table elements code right below the array declaration.

 echo("<table border='0'>");

 echo("<tr>");

 echo("<th>Name</th>");

 echo("<th>GPA</th>");

 echo("</tr>");

 Step 2: Tweak the foreach-loop and insert the appropriate table data cell alignment codes.

 foreach ($gpas as $key => $value)

 {

 echo("<tr>");

 echo("<td align='left'>" . $key . "</td>");

 echo("<td align='center'>" . $value . "</td>");

 echo("</tr>");

 }

 The complete code listing should now look like this:

 [bookmark: _Toc387669630][bookmark: _Toc387669988][bookmark: _Toc387671712][bookmark: _Toc387672054]Code listing: Code Listing: foreachLoops_2.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Foreach Loop Example 1</title>

 </head>

 <body>

 <?php

 $gpas;

 $gpas["Adam"] = 4.00;

 $gpas["Ervin"] = 3.75;

 $gpas["Erin"] = 3.90;

 $gpas["Jim"] = 3.59;

 $gpas["Eric"] = 3.00;

 $gpas["Duane"] = 2.11;

 $gpas["Sally"] = "Not given";

 echo("<table border='0'>");

 echo("<tr>");

 echo("<th>Name</th>");

 echo("<th>GPA</th>");

 echo("</tr>");

 foreach ($gpas as $key => $value)

 {

 echo("<tr>");

 echo("<td align='left'>" . $key . "</td>");

 echo("<td align='center'>" . $value . "</td>");

 echo("</tr>");

 }

 echo("</table>");

 ?>

 </body>

 </html>

 [image:]

 Figure 5.26: Inputting the statements of foreachLoops_2.php

 Step 3: Save your file as foreachLoops_2.php.

 Step 4: Run your output.

 [image:]

 Figure 5.27: Output of foreachLoops_2.php

 Using foreach-loop, let’s do some mathematical manipulations in another associative array. The second example will involve computing for the GPA of a student given the subject grades.

 Problem: Write a program where seven academic subjects along with the final grades are listed. At the end of the list the average GPA is computed. See the following table for the values.

 	 Subjects

 	 Grades

 	 Algebra

 	 3.50

 	 Biology

 	 3.75

 	 Arts

 	 3.00

 	 Writing

 	 2.50

 	 Communications

 	 2.50

 	 Languages

 	 4.00

 	 History

 	 3.75

 Solution:

 Step 1: Open an HTML5 document template. In the <title> tag, type your title as foreachLoops_3.php. Save your file in the www or htdocs folder. I will no longer include an image here since you are already familiar with this step.

 Step 2: With the Komodo Edit foreachLoops_3.php file still open, type the following program statements.

 Declare the associative array as follows:

 $subject;

 $subject['Algebra'] = 3.50;

 $subject['Biology'] = 3.75;

 $subject['Arts'] = 3.00;

 $subject['Writing'] = 2.50;

 $subject['Communications'] = 2.50;

 $subject['Languages'] = 4.00;

 $subject['History'] = 3.75;

 To compute for the average, all the grades must be totaled then divided by the number of subjects. Therefore, you must include in the declaration two variables that will hold the sum, $gpt, and the average, $gpa, of the grades:

 $gpa=0;

 $gpt=0;

 In the foreach-loop, include the instruction that will list the different subjects and the corresponding grade. This is also the portion where you will include the process to add all the grades.

 foreach($subject as $name => $value)

 {

 echo("<tr>");

 echo("<td align='left'>" . $name . "</td>");

 echo("<td align='center'>" . $value . "</td>");

 echo("</tr>");

 $gpt += $value;

 }

 This is the complete code listing:

 [bookmark: _Toc387669631][bookmark: _Toc387669989][bookmark: _Toc387671713][bookmark: _Toc387672055]Code Listing: foreachLoops_3.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Foreach Loop Example 3</title>

 </head>

 <body>

 <?php

 $subject;

 $subject['Algebra'] = 3.50;

 $subject['Biology'] = 3.75;

 $subject['Arts'] = 3.00;

 $subject['Writing'] = 2.50;

 $subject['Communications'] = 2.50;

 $subject['Languages'] = 4.00;

 $subject['History'] = 3.75;

 $gpa=0;

 $gpt=0;

 echo("<table border='1'>");

 echo("<tr>");

 echo("<th>Subject</th>");

 echo("<th>Grade</th>");

 foreach($subject as $name => $value)

 {

 echo("<tr>");

 echo("<td align='left'>" . $name . "</td>");

 echo("<td align='center'>" . $value . "</td>");

 echo("</tr>");

 $gpt += $value;

 }

 $gpa = ($gpt/count($subject));

 echo("<tr>");

 echo("<th align='left'>Average GPA</th>");

 printf("<th align='center'>%0.2f</th>", $gpa);

 echo("</tr></table>");

 ?>

 </body>

 </html>

 Step 3: Save your file.

 Step 4: Run your output.

 [image:]

 Figure 5.28: Output of foreachLoops_3.php

 [bookmark: _Toc387669632][bookmark: _Toc387669990][bookmark: _Toc387671714][bookmark: _Toc387672056]Chapter Quiz

 1. What are loops?

 a. An endless iteration of a code segment.

 b. Commands that execute a block of a code a fixed number of times.

 c. Commands that repeat the process of a code segment depending on the condition set in the program.

 d. Control structures that ignore the repetition of a process.

 2. What is the main difference between while-loops and do-while-loops?

 a. While-loops are shorter than do-while-loops.

 b. Do-while-loops have more complex coding than while-loops.

 c. Do-while-loops iterate at least once even if the condition is initially set to FALSE; while-loops ignore the loop if the initial value is FALSE.

 d. There is no difference at all.

 3. What is a for-loop?

 a. For-loops are loops that iterate a code segment four times.

 b. For-loops are loops that have longer coding than while and do-while loops.

 c. For-loops are a compact type of loop that contain the logic and parameters of the loop all in one line.

 d. For-loops are control structure designed to handle loops involving arrays.

 4. Which loop would be wise to use when dealing with complex arrays?

 a. while-loop

 b. do-while-loop

 c. for-loop

 d. foreach-loop

 [bookmark: _Toc387669633][bookmark: _Toc387669991][bookmark: _Toc387671715][bookmark: _Toc387672057]Chapter Lab Exercise:

 Problem 1: Create a loop routine that will display the following output. Don’t cheat! You may only print() or echo() one asterisk symbol at a time and not a string of asterisks.

 *

 **

 Problem 2: Write a program that will compute for the total score of a basketball team at the end of the game. Sum up the total points gained by each of the players from the first half and second half of the game. The following table represents the associative array and the points the team gained during the game.

 	
 Player’s Name

 	 Points- First Half

 	 Points- Second Half

 	 Brandon Bass

 	 5

 	 3

 	 Avery Bradley

 	 0

 	 2

 	 Jordan Crawford

 	 6

 	 2

 	 Kevin Garnett

 	 7

 	 5

 	 Jeff Green

 	 3

 	 3

 	 Courtney Lee

 	 1

 	 4

 	 Fab Melo

 	 0

 	 2

 	 Paul Pierce

 	 15

 	 10

 	 Shavlik Randolph

 	 0

 	 0

 	 Rajon Rondo

 	 20

 	 8

 	 Jared Sullinger

 	 0

 	 3

 	 Jason Terry

 	 9

 	 10

 	 D.J. White

 	 3

 	 2

 	 Chris Wilcox

 	 1

 	 2

 	 Terrence Williams

 	 0

 	 0

 Problem 3: Create a program that will compute for an investment’s monthly earnings. The program must be able to generate a report with the following information:

 (1) Principal amount invested

 (2) Interest rate (annual)

 (3) Term or duration of the investment in years (6 months is entered as 0.5, 3 months = 0.25, and so on.)

 (4) Monthly current balances

 (5) Aggregate balance at the end of the investment term

 The term or duration and interest rate will vary depending on the numbers input in the form. However, the following conditions must prevail to accurately compute for the earnings.

 (1) Monthly interest rate is computed as:

 Monthly Interest Rate = $interestRate/12

 (2) Monthly interest must be reported and should be computed as:

 Monthly Interest = $principal *$monthlyInterestRate

 (3) Monthly current balances must also be reported and should be computed as:

 Monthly Balance = $principal + $monthlyInterest

 (4) Future investment value at end of the term is computed as :

 Total Investment = the last monthly balance

 Principal amount, annual interest rate and term must all be treated as $superglobal variables.

 Prepare two document files for the solution. The superglobals will be handled by a form page. The computation is taken care of by a separate document containing a pure PHP script which will handle all the computations and processing of output.

 This is how the form page should look:

 [image:]

 Figure 5.29: Form page or input screen display for Lab Exercise 3.

 Format the output as follows:

 	 Principal Amount

 	

 	 Annual Interest Rate

 	

 	 Term

 	

 	 Earnings History

 	 Month

 	 Monthly Interest Earned

 	 Current Balance

 	 Month 1

 	

 	

 	 Month 2

 	

 	

 	 Month 3

 	

 	

 	 …

 	

 	

 	 Month n

 	

 	

 	

 	 Investment’s future value at end of term

 	

 [bookmark: _Toc387669634][bookmark: _Toc387669992][bookmark: _Toc387671716][bookmark: _Toc387672058]Chapter Lab Exercise Solutions:

 Solution 1:

 [bookmark: _Toc387669635][bookmark: _Toc387669993][bookmark: _Toc387671717][bookmark: _Toc387672059]Code Listing: Chapter Lab Problem 1 Solution

 [bookmark: _Toc387669636][bookmark: _Toc387669994][bookmark: _Toc387671718][bookmark: _Toc387672060]chapterLabProb_1.php

 <?php

 for($i=0;$i<=10;$i++)

 {

 for($j=0;$j<=$i;$j++)

 {

 print("*\t");

 }

 print("</br>");

 }

 ?>

 Solution 1 Output:

 [image:]

 Figure 5.30: Output of Lab Exercise 1 (chapter5LabProb_1.php)

 Solution 2:

 [bookmark: _Toc387669637][bookmark: _Toc387669995][bookmark: _Toc387671719][bookmark: _Toc387672061]Code Listing: Chapter Lab Problem 2 Solution

 [bookmark: _Toc387669638][bookmark: _Toc387669996][bookmark: _Toc387671720][bookmark: _Toc387672062]chapterLabProb_2.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Chapter 5 Lab Exercise Solution 2</title>

 </head>

 <body>

 <?php

 $boston = array

 (

 "Brandon Bass" => array (5, 3),

 "Avery Bradley" => array (0, 2),

 "Jordan Crawford" => array (6, 2),

 "Kevin Garnett" => array (7, 5),

 "Jeff Green" => array (3, 3),

 "Courtney Lee" => array (1, 4),

 "Fab Melo" => array (0, 2),

 "Paul Pierce" => array (15, 10),

 "Shavlik Randolph" => array (0, 0),

 "Rajon Rondo" => array (20, 8),

 "Jared Sullinger" => array (0, 3),

 "Jason Terry" => array (9, 10),

 "D.J. White" => array (3, 2),

 "Chris Wilcox" => array (1, 2),

 "Terrence Williams" => array (0, 0)

);

 $totalScore = 0;

 //add all points to get the total score

 foreach($boston as $key)

 {

 foreach($key as $value)

 {

 $totalScore += $value;

 }

 }

 //set up the table heading

 echo("<table border='1'>");

 echo("<tr>");

 echo("<th>Player Name</th>");

 echo("<th>Points-First Half</th>");

 echo("<th>Points-Second Half</th>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Brandon Bass</td>");

 echo("<td align='center'>" . $boston['Brandon Bass'][0] . "</td>");

 echo("<td align='center'>" . $boston['Brandon Bass'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Avery Bradley</td>");

 echo("<td align='center'>" . $boston['Avery Bradley'][0] . "</td>");

 echo("<td align='center'>" . $boston['Avery Bradley'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Jordan Crawford</td>");

 echo("<td align='center'>" . $boston['Jordan Crawford'][0] . "</td>");

 echo("<td align='center'>" . $boston['Jordan Crawford'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Kevin Garnett</td>");

 echo("<td align='center'>" . $boston['Kevin Garnett'][0] . "</td>");

 echo("<td align='center'>" . $boston['Kevin Garnett'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Jeff Green</td>");

 echo("<td align='center'>" . $boston['Jeff Green'][0] . "</td>");

 echo("<td align='center'>" . $boston['Jeff Green'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Courtney Lee</td>");

 echo("<td align='center'>" . $boston['Courtney Lee'][0] . "</td>");

 echo("<td align='center'>" . $boston['Courtney Lee'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Fab Melo</td>");

 echo("<td align='center'>" . $boston['Fab Melo'][0] . "</td>");

 echo("<td align='center'>" . $boston['Fab Melo'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Paul Pierce</td>");

 echo("<td align='center'>" . $boston['Paul Pierce'][0] . "</td>");

 echo("<td align='center'>" . $boston['Paul Pierce'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Shavlik Randolph</td>");

 echo("<td align='center'>" . $boston['Shavlik Randolph'][0] . "</td>");

 echo("<td align='center'>" . $boston['Shavlik Randolph'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Rajon Rondo</td>");

 echo("<td align='center'>" . $boston['Rajon Rondo'][0] . "</td>");

 echo("<td align='center'>" . $boston['Rajon Rondo'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Jared Sullinger</td>");

 echo("<td align='center'>" . $boston['Jared Sullinger'][0] . "</td>");

 echo("<td align='center'>" . $boston['Jared Sullinger'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Jason Terry</td>");

 echo("<td align='center'>" . $boston['Jason Terry'][0] . "</td>");

 echo("<td align='center'>" . $boston['Jason Terry'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>D.J. White</td>");

 echo("<td align='center'>" . $boston['D.J. White'][0] . "</td>");

 echo("<td align='center'>" . $boston['D.J. White'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Chris Wilcox</td>");

 echo("<td align='center'>" . $boston['Chris Wilcox'][0] . "</td>");

 echo("<td align='center'>" . $boston['Chris Wilcox'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Terrence Williams</td>");

 echo("<td align='center'>" . $boston['Terrence Williams'][0] . "</td>");

 echo("<td align='center'>" . $boston['Terrence Williams'][1] . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<th>End Game Score</th>");

 echo("<td align='center' colspan='2'>" . $totalScore . "</td>");

 echo("</tr>");

 ?>

 </body>

 </html>

 Solution 2 Output:

 [image:]

 Figure 5.31: Output of Lab Exercise 2 (chapter5LabProb_2.php)

 Solution 3:

 [bookmark: _Toc387669639][bookmark: _Toc387669997][bookmark: _Toc387671721][bookmark: _Toc387672063]Code Listing: Chapter Lab Problem 3 Solution

 [bookmark: _Toc387669640][bookmark: _Toc387669998][bookmark: _Toc387671722][bookmark: _Toc387672064]chapterLabProb_3.html

 <!DOCTYPE html>

 <html>

 <head>

 <title> Chapter 5 Lab Exercise Solution 3</title>

 </head>

 <body>

 <form action="chapter5LabProb_3.php" method="post">

 <table>

 <tr>

 <th align=left>Principal</th>

 <td><input name="principal" /></td>

 </tr>

 <tr>

 <th align=left>Interest Rate in %</th>

 <td><input name="interestRate" /></td>

 </tr>

 <tr>

 <th align=left>Term</th>

 <td><input name="term" /></td>

 </tr>

 <tr>

 <td><input type="submit" value="Okay" /></td>

 <td><input type="reset" value="Clear" /></td>

 </tr>

 </table>

 </form>

 </body>

 </html>

 Solution 3: Form Output

 [image:]

 Figure 5.32: Input Screen for Lab Exercise 3 (chapter5LabProb_3.php)

 [bookmark: _Toc387669641][bookmark: _Toc387669999][bookmark: _Toc387671723][bookmark: _Toc387672065]Code Listing: Chapter Lab Problem 3 Solution

 [bookmark: _Toc387669642][bookmark: _Toc387670000][bookmark: _Toc387671724][bookmark: _Toc387672066]chapterLabProb_3.php

 <?php

 $principal = $_REQUEST['principal'];

 $interestRate = ($_REQUEST['interestRate'] / 100);

 $term = $_REQUEST['term'];

 $mi = 0;

 $mir = 0;

 $mb = $principal;

 $months = ($term * 12);

 $mir = ($interestRate / 12);

 $final=0;

 echo("<table border='1'>");

 echo("<tr>");

 echo("<td>Principal Amount</td>");

 echo("<td colspan='2' align='center'>" . $principal . "</td>");

 echo("</tr>");

 echo("<td>Annual Interest Rate (In Decimal)</td>");

 echo("<td colspan='2' align='center'>" . $interestRate . "</td>");

 echo("</tr>");

 echo("<td>Term (In months)</td>");

 echo("<td colspan='2' align='center'>" . $months . "</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td colspan='3' align='center'>Earnings History</td>");

 echo("</tr>");

 echo("<tr>");

 echo("<td>Month</td>");

 echo("<td>Monthly Interest Earned</td>");

 echo("<td>Current Balance</td>");

 echo("</tr>");

 for($i = 1; $i<=$months; $i++) {

 $mi = ($mb*$mir);

 $mb = ($mb+$mi);

 echo("<tr>");

 echo("<td align='center'>Month " . $i . "</td>");

 printf("<td>%0.2f</td>", $mi);

 printf("<td>%0.2f</td>", $mb);

 $final=$mb;

 }

 echo("<tr>");

 echo("<td colspan='2'>Investment's future value at end of term</td>");

 printf("<td>%0.2f</td>", $final);

 echo("</tr></table");

 ?>

 Solution 3 Output:

 Principal: 600, Interest: 10%, Term: (5 months) 0.41667

 [image:]

 Figure 5.33: First set of input values for Lab Exercise 3

 [image:]Figure 5.34: Output for first set of input values - Principal: 600, Int: 10%, Term: (5 months) 0.41667

 Principal: 100, Interest: 10%, Term: (12 months) 1 year

 [image:]

 Figure 5.35: Second set of input values for Lab Exercise 3

 [image:]

 Figure 5.36: Output for second set of input values - Principal: 100, Int: 10%, Term: (12 Months) 1 Year

 [bookmark: _Toc387671725][bookmark: _Toc387672067]Chapter Summary:

 In this chapter you studied the structure and syntax, as well as numerous examples, of the different looping or iteration structures in PHP: while-loop, do-while-loop, for-loop and foreach-loop.

 Among those four looping structures, the foreach-loop is the only iteration structure that is specifically designed to handle all types of arrays, making it possible to manipulate them with ease.

 In the next chapter, we will discuss custom PHP functions.

 [bookmark: _Toc387669643][bookmark: _Toc387670001][bookmark: _Toc387671726][bookmark: _Toc387672068]Chapter 6: Custom PHP Functions

 Chapter Objectives:

 • You will be able to define what PHP functions are.

 • You will learn the format and syntax used in creating and calling functions.

 • You will learn about function arguments which are used to pass values to functions and functions parameters which are used to receive the values passed to functions.

 • You will learn how to return values from functions.

 • You will learn how to organize your own functions into PHP function container files and how to retrieve them with the PHP built-in functions include and require.

 [bookmark: _Toc387669644][bookmark: _Toc387670002][bookmark: _Toc387671727][bookmark: _Toc387672069]6.1 Introduction and Overview

 Functions are an indispensable feature of programming languages because:

 	in a well-designed computer system, 98% of that system’s code will reside in functions, and

 	a full understanding of functions is vital to mastering the widely-used paradigm of OOP (object-oriented programming) which lets programmers build modular, reusable code and makes it easy to build large applications that are simple to maintain.

 Space limitations prevent us from tackling all the features and capabilities of PHP functions. We will only be discussing the fundamentals, as stated in the chapter objectives, that will get the beginner started with functions.

 Now, you may have been unaware of it, but since Chapter 1 you have been using functions. Specifically, you have used or called, not only once but several times, three out of PHP’s thousands of built-in functions, namely: echo(), print() and printf().

 Here are actual instances from Chapter 1 where you used those functions.

 echo("</br>This is my second PHP statement");

 print("Hello! ");

 printf("I am %d years old", 21);

 In Chapter 3, you used the array() function. The instance in which you called the array() function may look more complicated than the preceding instances, but it follows the same format and syntax of function calls.

 $salary = array("Doe" => 30000,

 "Smith" => 28000,

 "Rogers" => 50000,

 "Adam" => 120000,

 "Brown" => 60000);

 TIP: Nov 27, 2012, a user at www.stackoverflow.com reported that there were 5,845 built-in or internal functions listed at the official PHP website, www.php.net. In addition, hundreds of developers provide fully tested and debugged functions in specialized code libraries which they produce and distribute, mostly for free. If you are looking for a feature or capability that you want to program into a website, chances are that feature or capability already exists as several functions in some developers’ code library. Searching for that code library and learning how to use it will definitely take far less time than programming and debugging it yourself. One large and popular library is PEAR (PHP Extension and Application Repository). Check it out at pear.php.net.

 [bookmark: _Toc387669645][bookmark: _Toc387670003][bookmark: _Toc387671728][bookmark: _Toc387672070]6.2 Calling Functions

 Functions (called subroutines in other programming languages, especially older ones) are self-contained compilations of program statements that perform a specific task, a specific function.

 For example, the primary job of the echo(), print() and printf() functions is to display in a browser the string value which is passed as an argument to them within the parentheses that must always follow the function name.

 As for the array() function, it creates an array from the values which are passed as arguments to the function. These values become the array’s elements or members. The array() function then returns a variable reference to the array.

 (Take a moment here to review the examples of echo(), print(), printf() and array() in the previous chapters.)

 TIP: A well-designed function will perform only one task. If you find a function doing more than one task, then it should be re-coded into several functions where each function performs only one task.

 A call to a function is equivalent to a program statement. When you call a function, program control jumps to the first line of the function. When the function finishes executing its code, program control transfers to the statement immediately after the function call.

 $retValue = functionName(arg1, arg2,...); // function call

 Program statement executed after functionName finishes executing.

 You can optionally control a function’s processing by passing any number of values, called arguments, to the function.

 For example, the echo() and print() functions were each passed one argument which is a string. This string is what the echo() and print() functions will display in the browser. Next, the printf() function was passed two arguments, the first a string, the second an integer. Both the string and the integer will be displayed in the browser as “I am 21 years old.” Lastly, the array() function was passed five arguments which will become the members or elements of the associative array $salary.

 Functions can also optionally pass a value, called a return value, back to you.

 Calling or executing a function executes the program statements of that function. When you call or execute a function, you can use any of the following formats.

 1. functionName();

 2. functionName(arg1, arg2,..., argN);

 3. $returnValue = functionName();

 4. $returnValue = functionName(arg1, arg2, . . .);

 functionName – This is the unique name you give the function. No two functions can have the same name.

 arg1, arg2, . . ., argN – This is an optional list of comma-separated literals or variable names, called arguments, which are values passed to the function. There is no limit to the number of arguments that you can pass. These arguments allow you to control the function’s execution and they are what give a function its power and flexibility.

 $returnValue – This is an optional variable which receives and stores an optional value returned by the function. By using a variable to hold a function’s return value, we make that value available to the rest of the script.

 Let’s look at one more example of a function call which uses all the optional components of a function call – the argument list and the return value. We will be referring to this example several times later in this chapter.

 $noDaysInMonth = days_in_month($month, $year);

 The days_in_month() function was written and contributed by a user of www.stackoverflow.com. It returns the number of days in a given month ($month) of any past and future year ($year), taking into account leap years.

 Functions are an essential component of any programming language. You simply have to have them for the following reasons:

 a. You eliminate duplicating code.

 Let’s say you write a routine that forms three-character, uppercase initials by taking the first letter of a person’s first name, middle name and last name. (For example, the initials GWB would be formed from George Walker Bush.)

 Without functions, you would have to copy and paste this routine for every person’s name you have to process. But with functions, you can place this routine in a function, call that function and pass the first name, middle name and last name as arguments. Then, the function would return the three character initials as a return value. For example:

 $givname = “George”;

 $midname = “Walker”;

 $surname = “Bush”;

 $initials = formInitials($givname, $midname, $surname);

 The previous four lines of code can be compacted into one line in this way.

 $initials = formInitials(“George”, “Walker”, “Bush”);

 In either of the two previous forms, the variable $initials will contain the characters, in uppercase, “GWB”.

 b. Functions can be reused in other scripts.

 You now have an error-free formInitials() function which you (and other programmers) can use in future scripts. You don’t even have to read or know what program statements make up the function. All you need to know is the function’s name, what it does, what arguments to pass to it, and what (if any) its return value is.

 c. Functions greatly reduce errors.

 Again, let’s say that without functions you have to resort to the copying and pasting in order to duplicate program statements. Let’s say that you copy and pasted a routine twenty times. Now a situation arises where you have to make a slight adjustment to that routine—this means that now you have to go to those twenty locations and make those changes. Besides the time and effort of making twenty separate edits, more likely than not, some typing error will creep in that will completely wreck your code. And you won’t know about it until the script actually bombs!

 But if your routine had been created as a function, you would only have to make the change once.

 d. Functions help you divide and conquer.

 Programming, or the writing of actual code, should be preceded by lengthy, systematic analysis. Before the foundation of a house or building is laid out, days and weeks were definitely spent on surveying the land, analyzing the soil, selecting the appropriate materials, and then drafting and finalizing the construction blueprints. A similar process of analysis and design is performed even before the first line of computer code is written.

 A careful, lengthy and systematic analysis of the system you are implementing in PHP code will reveal that the entire system can be broken down into a hierarchy of tasks or jobs. Each of those tasks can be programmed into a function which will fit nicely into a hierarchy of functions. Once all the functions have been developed and tested, including their interfaces with other functions, then the top-level controlling routines can be finalized.

 In fact, a well-designed system will have as much as 98 percent of its code in functions, with the remaining 2 percent consisting of top-level control code to control the execution of those functions.

 [bookmark: _Toc387669646][bookmark: _Toc387670004][bookmark: _Toc387671729][bookmark: _Toc387672071]6.3 The Include() and Require() Functions

 In the previous section, we covered all the aspects of how to call or execute functions, including passing arguments to functions and retrieving and storing the function’s return value. We’ll get down to the nitty-gritty of creating functions in the next section. For now, we will cover how to organize the various functions you will be coding and how to easily access them. By “organizing” we mean where or in what files do you place or store the functions you will create so that they can be easily found and accessed?

 In all the previous chapters, we have written our PHP code within PHP tags in an HTML structured document that has .php as its filename extension (not .html). However, this is not the practice in real life PHP coding. Ideally, the only PHP code in the HTML-structured document would be one function call to the top-level control function in a hierarchy of PHP functions, such as:

 <php

 main();

 ?>

 The main task of main() (or whichever appropriate name you choose) is to control the execution of the second-level control functions in the hierarchy of functions. The code for the main() function itself would reside in a separate .php file.

 Functions should be stored in separate PHP function container files to facilitate orderliness, retrieval and maintenance. Let’s say that in one project, the development team coded, tested and debugged 100 functions. Suppose that each function averaged 20 lines, with the shortest functions having only two lines and the longest function having a hundred lines. Experienced programmers would not place all those 100 functions in one PHP script file (which would be at least 2000 lines of code and require 40 sheets of hardcopy printouts). They would first classify and group the functions according to their main tasks and then place or store functions with similar tasks in separate PHP function container files. For example, functions handling graphics would be placed in graphics.php. Functions dealing with calculating discounts would go in discounts.php, and so on.

 Programmers can then read into the main script file, on an as-needed basis, whatever function container file is needed. To accomplish this, programmers would use any of the following four functions:

 include(“phpScriptName”);

 include_once(“phpScriptName”);

 require(“phpScriptName”);

 require_once(“phpScriptName”);

 All four functions allow the functions in file phpScriptName to be integrated into the current script file just as if the code had been copied and pasted.

 The only difference between include() and require() is that include() merely raises a PHP warning (E_WARNING) if the file to be included can’t be found, while require() raises a fatal error (E_COMPILE_ERROR) and stops running the script.

 Include_once() and require_once() are used to prevent nested includes. To understand nested includes, let’s consider the following four PHP scripts – 1stScript.php, 2ndScript.php, myFuncsA.php and 4thScript.php.

 // 1stScript.php

 <php

 include(“myFuncsA.php”)

 validateParameters();

 ?>

 // 2ndScript.php

 <php

 include(“myFuncsA.php”)

 function computeValues(param1, param2) {

 program statements;

 return $computedValue;

 }

 validateParameters();

 ?>

 // myFuncsA.php

 <php

 function validateParameters() {

 program statements;

 return expression;

 }

 ?>

 // 4thScript.php

 <php

 include(“1stScript.php”);

 include(“2ndScript.php”);

 ?>

 1stScript.php and 2ndScript.php both include myFuncsA.php wherein the function validateParameters() is defined and coded. So far so good! But now here comes 4thScript.php which includes both 1stScript.php and 2ndScript.php. This is our nested includes situation!

 The problem will occur when 4thScript.php includes 2ndScript.php because when this happens 2ndScript.php will include myFuncA.php which contains the definition of validateParameters(). But 1stScript.php already included myFuncA.php and in this process defined validateParameters(). So when 2ndScript.php included myFuncA.php, it defined validateParameters() again, thus causing a fatal error which displayed a long error message, a portion of which reads:

 Cannot redeclare validateParameters() (previously declared in myFuncA.php) . . .

 A function can only be declared once, which occurred when 2ndScript.php included myFuncA.php, causing the function validateParameters() to be redefined.

 To get around this problem, we use include_once() in 4thScript.php.

 // 4thScript.php

 <php

 include_once(“1stScript.php”);

 include_once(“2ndScript.php”);

 ?>

 Include_once() and require_once() include the specified file or script only once during the current script execution. If you call include_once() or require_once() again to include the same file or script, nothing will happen.

 The include() or require() function calls should be placed in the <head> section of the HTML document.

 It should also be understood that when you include a script file of PHP functions, you do NOT automatically execute those functions. A function can only be executed with a correctly formatted function call with the correct number and sequence of required parameters.

 Let’s work on some examples.

 [image:]

 Figure 6.1: Start file creation in the Komodo Edit start page by clicking New File.

 Choose New file and a window will pop up. Select PHP template and set www or htdocs as the directory in which to save a new file called includeMe.php.

 [image:]

 Figure 6.2: Komodo Edit’s New File dialogue window. Type the file name includeMe.php and save the file in your www or htdocs folder.

 With the new PHP file open, type the following code within the PHP opening and closing tags.

 <?php

 print("This statement is called from the file includeMe.php using the include command.");

 ?>

 [image:]

 Figure 6.3: includeMe.php code in Komodo Edit.

 Save and run this script.

 This code will produce the following output:

 [image:]

 Figure 6.4: Output when includeMe.php script is run.

 Create another PHP file using the template but this time, use include.php as the filename.

 In the include.php file, type the following code that prints the same statement and then inserts a break tag. Then put in an include command and place it inside includeMe.php.

 Your code should look like this:

 <?php

 print("The following statement below is printed out using the include function. ");

 print("</br>");

 include("includeMe.php");

 ?>

 [image:]

 Figure 6.5: The complete code listing for include.php as viewed in Komodo Edit.

 Your output from the new file should look like this:

 [image:]

 Figure 6.6: Output for include.php when ran.

 Include can be repeated multiple times by just replicating the include function statement within the program.

 Modify include.php by copying the code below, then run it.

 <?php

 print("The following statement below is printed out using the include function.");

 print("</br>");

 include("includeMe.php");

 print("</br>");

 include("includeMe.php");

 print("</br>");

 include("includeMe.php");

 print("</br>");

 include("includeMe.php");

 ?>

 Here is how the new output should look:

 [image:]

 Figure 6.7: Output for modified include.php when run.

 Now, replace include with require in our previous include.php code and add a few more print statements. Also, change the file inside the require statement as shown in the code below and then save the file as include_2.php.

 [bookmark: _Toc387669647][bookmark: _Toc387670005][bookmark: _Toc387671730][bookmark: _Toc387672072]Code Listing: include_2.php

 <?php

 print("The following statement below is printed out using the include function.");

 print("</br>");

 require("includeMeXX.php");

 print("</br>");

 include("includeMe.php");

 print("</br>");

 include("includeMe.php");

 print("</br>");

 include("includeMe.php");

 print("The following statement below is printed out using the include function.");

 print("</br>");

 print("The following statement below is printed out using the include function.");

 print("</br>");

 print("The following statement below is printed out using the include function.");

 print("</br>");

 ?>

 Notice that when the error was found in the require statement, none of the code after the statement was processed and the program stopped.

 [image:]

 Figure 6.8: Output for include_2.php when ran.

 As for the include function, instead of getting an error, the error is ignored. For example, type and save the following code under the file name include_3.php and run the output:

 [bookmark: _Toc387669648][bookmark: _Toc387670006][bookmark: _Toc387671731][bookmark: _Toc387672073]Code Listing: include_3.php

 <?php

 print("The following statement below is printed out using the include function.");

 print("</br>");

 include("includeMeXX.php");

 print("</br>");

 include("includeMe.php");

 print("The following statement below is printed out using the include function.");

 print("</br>");

 print("The following statement below is printed out using the include function.");

 print("</br>");

 print("The following statement below is printed out using the include function.");

 print("</br>");

 ?>

 If all print and include statements were processed, the output will display six sentences. But because one of the include statements called a non-existent or “null” file—includeMeXX.php, the program will interpret that section of the code as an error and print out an error statement in the browser. When require is used instead of include, the program will halt as well.

 [image:]

 Figure 6.9: Output for include_3.php when ran.

 [bookmark: _Toc387669649][bookmark: _Toc387670007][bookmark: _Toc387671732][bookmark: _Toc387672074]6.4 Creating a Simple Function

 Now let’s study how to write our own functions. This is the format and syntax we have to follow:

 function functionName(param1, param2, . . . paramN) {

 program statements;

 return expression;

 }

 The first line must begin with the keyword function. Then, comes the name of your function. This name must follow certain rules.

 A valid functionName starts with a letter or underscore, followed by any number of letters, numbers, or underscores. Function names are not case sensitive.

 We earlier said that a function is a “self-contained collection of program statements that perform a specific task.” When you name a function, that name should give you an idea of the “specific task” the function will perform.

 The function name should be followed by a set of parentheses, (). If the function will be programmed to receive arguments, then a comma separated list of parameters (param1, param2, . . . paramN) that will receive the arguments should be placed within the parentheses. You can specify as many parameter variables as needed but for each parameter that you specify, a corresponding argument has to be passed to the function when it is called. Put another way, the order and number of arguments in the function call should match the order and number of parameters in the function definition.

 Whether your function will receive arguments or not, the parentheses, (), must follow the function name.

 NOTE: What’s the difference between arguments and parameters? An argument is a value you pass to a function and a parameter is the variable within the function that receives the argument. In real life, the terms are used interchangeably.

 After the parentheses, comes the function’s main code block, which are delimited by curly brackets {}. Within this code block you can write any PHP program statement including calls to other functions including the current function, a practice known as recursion.

 The return statement returns expression.

 TIP: Just in case you have forgotten just what an expression is, you can review section 1 of chapter 4 “Simple Control Structure—If Statement”.

 A return statement can be placed anywhere in the function’s code block but once the return statement is executed, the function immediately terminates and control is returned to the calling script, specifically the first program statement after the function call.

 Let’s create a simple function. Prepare two file templates: a PHP function container file and a HTML document that will call the functions from the container file.

 Step 1: Create a PHP template with the file name functions.php. This will be our function container file. Click New File.

 [image:]

 Figure 6.10: Komodo Edit start page. Click on New File.

 [image:]

 Figure 6.11: Komodo Edit’s New File dialogue window. Type the file name functions.php and save the file in your www or htdocs folder.

 Once the functions.php file is created, begin writing the first function —greeting().

 Step 2: In your functions.php file, type the following code.

 <?php

 function greeting()

 {

 echo("Hello! This is a greeting!");

 }

 ?>

 [image:]

 Figure 6.12: Output for functions.php when run.

 The statement enclosed by the opening and closing curly brackets is the code that is actually called by the HTML document that requires the function. The PHP functions script container file must properly contain these functions and the HTML document must properly include or require the functions.

 Now let’s add a second function, loop(), to our container file. This loop routine will display asterisks (*) in a triangular structure.

 <?php

 function greeting()

 {

 print("Hello! This is a greeting!</br>");

 }

 function loop()

 {

 for($i=0; $i<=10; $i++)

 {

 for($j=0; $j<=$i; $j++)

 {

 print("*\t");

 }

 print("
");

 }

 }

 ?>

 The complete code listing should now look like this:

 [image:]

 Figure 6.13: Modified code listing for functions.php.

 After adding your second function, create your HTML master document that will call the functions from the functions.php container file.

 Step 3: Click your functionCalls.php file in Komodo Edit to make it the active document.

 [image:]

 Figure 6.14: New HTML5 document template for functionCalls.php

 Step 4: Type in the following codes. Make sure the functions container file functions.php is required in the head section of the functionCalls.php document. Save the document when you are done.

 [bookmark: _Toc387669650][bookmark: _Toc387670008][bookmark: _Toc387671733][bookmark: _Toc387672075]Code Listing: functionCalls.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Function Calls</title>

 <?php

 require("functions.php");

 ?>

 </head>

 <body>

 <?php

 ?>

 </body>

 </html>

 If you attempt to run functionCalls.php this early, no output will be displayed except for a parse error. This is because none of the functions were called yet.

 When function containers are included or required in a document, it does not necessarily mean that the functions are automatically called, too. The functions will have to be explicitly called within the HTML document. This modularity for writing out functions makes extensive coding much simpler and easier to deal with.

 [image:]

 Figure 6.15: Output for functionCalls.php when run.

 To properly call the function, the functions must be specifically called from within the HTML document by including their function name.

 <body>

 <?php

 greeting();

 loop();

 ?>

 </body>

 To call out the two functions—greeting and loop, the functionCalls.php document has to be updated.

 Step 5: Tweak your code as follows:

 [bookmark: _Toc387669651][bookmark: _Toc387670009][bookmark: _Toc387671734][bookmark: _Toc387672076]Code Listing: Updated functionCall.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Function Calls</title>

 <?php

 require("functions.php");

 ?>

 </head>

 <body>

 <?php

 greeting();

 loop();

 ?>

 </body>

 </html>

 Step 6: Save the updated document and view your output.

 [image:]

 Figure 6.16: Output for functionCalls.php after properly calling the functions greeting() and loop() in the program.

 [bookmark: _Toc387669652][bookmark: _Toc387670010][bookmark: _Toc387671735][bookmark: _Toc387672077]6.5 Function Arguments

 Passing arguments to a function is not just a way for programmers to communicate with the function. Arguments give functions their immense power and flexibility because arguments control the processing logic of functions. Let’s look again at a previous example, the days_in_month() function. The complete definition of the function is listed here.

 function days_in_month($month, $year)

 {

 return $month == 2 ? ($year % 4 ? 28 : ($year % 100 ? 29 : ($year % 400 ? 28 : 29))) : (($month - 1) % 7 % 2 ? 30 : 31);

 }

 Although it looks complicated, the function’s code block is just one line consisting of nested ternary operators. The function is called with two parameters:

 a. $month – the numeric representation of each of the twelve months, and

 b. $year - a four-digit integer representing the year.

 The function’s return value is the number of days it has calculated for the specific $month and specific $year passed to it. An actual call to the function for the number of days in February, 2014 would be:

 $noDaysInMonth = days_in_month(2, 2014)

 The function would return 28 which will be stored in the variable $noDaysInMonth.

 Now, let’s imagine that we couldn’t pass arguments to functions. In the case of the days_in_month() function, we would have to write code for a version of that function for every month of every year we want to calculate!

 Functions without arguments would be useless! But with parameters, we have one function to handle all the months of all the past and future years, on to eternity!

 Here are some rules governing passing arguments to functions.

 a. If more than one argument is to be passed to a function, the arguments have to be separated by commas.

 b. The number and order of the arguments passed to the function must match the number and order of the parameters as declared in the function definition. If the function declaration requires three parameters, then three corresponding arguments must be passed.

 Let’s take a previous example, a function that declared three parameters. This is the function’s partial declaration:

 Function formInitials($givname, $midname, $surname) { program statements

 }

 A correct call to this function would be:

 $initials = formInitials(“George”, ”Walker”, “Bush”)

 There are three arguments for three parameters and the order of the arguments corresponds to the order of the parameters. The argument “George” corresponds to the parameter $givname, the argument “Walker” to $midname, the argument “Bush” to $surname. Change the order of the arguments and you get erroneous results!

 c. Arguments can be any of the eight PHP data types, namely: integers, floating-point numbers, strings, booleans, arrays, objects, resources (or handles) and even null. (Although passing a null value to a function is a rarity.)

 d. There is no limit to the number of arguments you can pass to a function. However, it is impractical to use more than five or six. Imagine the difficulty and high probability of errors if you define and use a function that required more than six arguments!

 TIP: By using arrays, you can pass any number of arguments to functions but still keep the interface simple because you are only passing one variable, the array, to the function.

 Let’s work on some examples.

 Step 1: Create a new PHP function script container file in a PHP template and use the file name functionArgs.php.

 [image:]

 Figure 6.17: Komodo Edit’s New File dialogue window for the file functionArgs.php.

 Step 2: Save it in your www or htdocs folder.

 Step 3: In the functionArgs.php file, create the function named dogAgeCalc() and pass the parameter $dogAge to the function.

 <?php

 function dogAgeCalc($dogAge)

 {

 Step 4: Write the code that will multiply the dog’s age by seven.

 $humanAge = $dogAge*7;

 print("The dog's age in human years is " . $humanAge .".");

 Step 5: Close the script.

 }

 ?>

 This script will calculate a dog’s given age in human years. For example, if the dog is 7 years old he would be equivalent to a 49-year-old human.

 Here is the complete code listing for the dog age calculator.

 [bookmark: _Toc387669653][bookmark: _Toc387670011][bookmark: _Toc387671736][bookmark: _Toc387672078]Code Listing: functionArgs.php

 [bookmark: _Toc387669654][bookmark: _Toc387670012]<?php

 [bookmark: _Toc387669655][bookmark: _Toc387670013]function dogAgeCalc($dogAge)

 [bookmark: _Toc387669656][bookmark: _Toc387670014]{

 [bookmark: _Toc387669657][bookmark: _Toc387670015]$humanAge = $dogAge*7;

 [bookmark: _Toc387669658][bookmark: _Toc387670016]print("The dog's age in human years is " . $humanAge .".");

 [bookmark: _Toc387669659][bookmark: _Toc387670017]}

 ?>

 If you attempt to run the code, it will display a blank output because no value is assigned yet to the variable $age. This is how the script’s output will look:

 [image:]

 Figure 6.18: Output for functionArgs.php when ran.

 Now to make this php function container file useful, we have to create another PHP document written in an HTML template.

 Step 6: Open a new HTML document template and name the file computeDogAge.php.

 [image:]

 Figure 6.19: Komodo Edit’s New File dialogue window for the file computeDogAge.php.

 Step 7: Include the opening and closing PHP script tags. In the <head> section of the document, include() the PHP function container file functionArgs.php. The calls to the include() and require() function must reside in the <head> section.

 <!DOCTYPE html>

 <html>

 <head>

 <title>Dog Age Calculator</title>

 <?php include("functionArgs.php"); ?>

 </head>

 Step 8: Call the function dogAgeCalc in the <body> section and assign the value five to $age, which is then passed to the function.

 <body>

 <?php

 dogAgeCalc(5);

 Step 9: Close the script and the document.

 ?>

 </body>

 </html>

 The complete code listing and output are shown as follows:

 [bookmark: _Toc387669660][bookmark: _Toc387670018][bookmark: _Toc387671737][bookmark: _Toc387672079]Code Listing: computeDogAge.php

 [bookmark: _Toc387669661][bookmark: _Toc387670019]<!DOCTYPE html>

 [bookmark: _Toc387669662][bookmark: _Toc387670020]<html>

 [bookmark: _Toc387669663][bookmark: _Toc387670021]<head>

 [bookmark: _Toc387669664][bookmark: _Toc387670022]<title>Dog Age Calculator</title>

 [bookmark: _Toc387669665][bookmark: _Toc387670023]<?php include("functionArgs.php"); ?>

 [bookmark: _Toc387669666][bookmark: _Toc387670024]</head>

 [bookmark: _Toc387669667][bookmark: _Toc387670025]<body>

 [bookmark: _Toc387669668][bookmark: _Toc387670026]<?php

 [bookmark: _Toc387669669][bookmark: _Toc387670027]dogAgeCalc(5);

 [bookmark: _Toc387669670][bookmark: _Toc387670028]?>

 [bookmark: _Toc387669671][bookmark: _Toc387670029]</body>

 </html>

 [image:]

 Figure 6.20: Output for computeDogAge.php when ran.

 [bookmark: _Toc387669672][bookmark: _Toc387670030][bookmark: _Toc387671738][bookmark: _Toc387672080]6.6 The Return Statement

 PHP functions can return only a single value with the return statement. The return statement is optional but if no return value is provided by the function, the function (on its own) will return null. The syntax for the return statement is:

 return expression;

 TIP: Just in case you have forgotten just what an expression is, you can review section 1 of chapter 4 “Simple Control Structure—If Statement”.

 What if you want to return more than one value from a function? Use an array!

 Note, however, that if a function returns more than one value, this might be an indication of bad design. Keep in mind that a function should accomplish only one task!

 Let’s take a look at the following example.

 The square(int) function accepts an integer as a parameter and returns the square of that integer.

 [bookmark: _Toc387669673][bookmark: _Toc387670031][bookmark: _Toc387671739][bookmark: _Toc387672081]Code Listing: returnExample1_internal.php

 <!DOCTYPE html>

 <html>

 <head>

 <?php

 function square($value)

 {

 $value = $value*$value;

 return($value);

 }

 ?>

 <title>Return Function Example 1</title>

 </head>

 <body>

 <?php

 print("The value of 2 squared is " . square(2). ".");

 ?>

 </body>

 </html>

 [image:]

 Figure 6.21: Output for returnExample1_internal.php.

 Now, let’s modify the script so that the return value of the function square() is stored in the variable $x.

 <body>

 <?php

 print("The value of 2 squared is " . square(2));

 $x = square(2);

 Now, add a print() statement to print the value of $x.

 print("</br> The value of the returned number is " . $x);

 Your updated code listing and output should now be:

 [bookmark: _Toc387669674][bookmark: _Toc387670032][bookmark: _Toc387671740][bookmark: _Toc387672082]Code Listing: returnExample2_internal.php

 [bookmark: _Toc387669675][bookmark: _Toc387670033]<!DOCTYPE html>

 [bookmark: _Toc387669676][bookmark: _Toc387670034]<html>

 [bookmark: _Toc387669677][bookmark: _Toc387670035]<head>

 [bookmark: _Toc387669678][bookmark: _Toc387670036]<title>Return Function Example 2</title>

 [bookmark: _Toc387669679][bookmark: _Toc387670037]<?php

 [bookmark: _Toc387669680][bookmark: _Toc387670038]function square($value)

 [bookmark: _Toc387669681][bookmark: _Toc387670039]{

 [bookmark: _Toc387669682][bookmark: _Toc387670040]$value = $value*$value;

 [bookmark: _Toc387669683][bookmark: _Toc387670041]return($value);

 [bookmark: _Toc387669684][bookmark: _Toc387670042]}

 [bookmark: _Toc387669685][bookmark: _Toc387670043]?>

 [bookmark: _Toc387669686][bookmark: _Toc387670044]</head>

 [bookmark: _Toc387669687][bookmark: _Toc387670045]<body>

 [bookmark: _Toc387669688][bookmark: _Toc387670046]<?php

 [bookmark: _Toc387669689][bookmark: _Toc387670047]print("The value of 2 squared is " . square(2));

 [bookmark: _Toc387669690][bookmark: _Toc387670048]$x = square(2);

 [bookmark: _Toc387669691][bookmark: _Toc387670049]print("</br> The value of the returned number is " . $x);

 [bookmark: _Toc387669692][bookmark: _Toc387670050]?>

 [bookmark: _Toc387669693][bookmark: _Toc387670051]</body>

 </html>

 [image:]

 Figure 6.22: Complete code listing for returnExample2_internal.php as viewed in Komodo Edit.

 [image:]

 Figure 6.23: Output for returnExample2_internal.php when ran.

 [bookmark: _Toc387669694][bookmark: _Toc387670052][bookmark: _Toc387671741][bookmark: _Toc387672083]Chapter Quiz

 1. What are functions?

 a. Blocks of related code that are stored under a specific keyword that may be called and repeatedly used.

 b. Equations that produce a curve.

 c. A complete code listing that performs a preset process in PHP.

 d. Keywords consisting of code, functions and commands.

 2. What are arguments?

 a. Values or strings that are passed into a function.

 b. A collision of two or more different opinions.

 c. Variables that contain a specific value.

 d. Comma separated values that complete a function.

 3. How does the return statement work?

 a. Return ends the execution of a function and returns a value to the caller of the function.

 b. Return will make the code start from a no-value argument and repeat itself.

 c. Return prints out the value that was passed onto a function.

 d. Return processes the list of operations and then returns the result.

 4. Which function will produce an error and terminate the script if the filename passed to that function as an argument cannot be found?

 a. include

 b. include_once

 c. require

 d. None of the above.

 [bookmark: _Toc387669695][bookmark: _Toc387670053][bookmark: _Toc387671742][bookmark: _Toc387672084]Chapter Lab Exercise:

 1. Write a function that will convert Celsius temperatures to Fahrenheit. Write another function that will convert Fahrenheit temperatures to Celsius. Here are the formulas.

 Formulas:

 Fahrenheit to Celsius: Tc = (5/9)*(Tf-32)

 Celsius to Fahrenheit: Tf = (9/5)*Tc+32

 Use the following parameters for this first exercise:

 a. Value to convert: 50

 b. Function name for:

 Fahrenheit to Celsius conversion – Celsius ()

 Celsius to Fahrenheit conversion –Fahrenheit ()

 c. Function parameter variable: $temp

 Use the two-document method to accomplish this. The first document should be the function container file named tempCalcFunc.php. The second document is the chap6Lab1_Sol.php saved using an HTML document template.

 Use the function include to reference the container file. Display the result as a two decimal floating point number.

 2. Modify your program so that the user can enter a temperature value using a form. Radio buttons will be used to indicate whether the temperature is in Celsius or Fahrenheit. When the user clicks the submit button the corresponding result must be displayed.

 Use the same function container file used in Lab Exercise 1, tempCalcFunc.php. Create another PHP script file in an HTML document template for the form. Use the filename chap6Lab2_Sol.php.

 [bookmark: _Toc387669696][bookmark: _Toc387670054][bookmark: _Toc387671743][bookmark: _Toc387672085]Chapter Lab Solution:

 [bookmark: _Toc387669697][bookmark: _Toc387670055][bookmark: _Toc387671744][bookmark: _Toc387672086]Code Listing: tempCalcFunc.php

 <?php

 function Celsius($temp)

 {

 $temp = ((($temp*9)/5)+32);

 print("The value in Fahrenheit is ");

 return($temp);

 }

 function Fahrenheit($temp)

 {

 $temp = (($temp-32)*5/9);

 print("The value in Celsius is ");

 return($temp);

 }

 ?>

 [image:]

 Figure 6.24: Complete code listing for tempCalcFunc.php as viewed in Komodo Edit.

 [bookmark: _Toc387669698][bookmark: _Toc387670056][bookmark: _Toc387671745][bookmark: _Toc387672087]Code Listing: chap6Lab1_Sol.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Chapter 6 Lab Exercise 1</title>

 <?php

 include("tempCalcFunc.php");

 ?>

 </head>

 <body>

 <?php

 printf("%0.2f", Celsius(50));

 print (".");

 print ("
");

 printf("%0.2f", Fahrenheit(50));

 print (".");

 ?>

 </body>

 </html>

 [image:]

 Figure 6.25: Complete code listing for chap6Lab1_Sol.php as viewed in Komodo Edit.

 [bookmark: _Toc387669699][bookmark: _Toc387670057][bookmark: _Toc387671746][bookmark: _Toc387672088]Code Listing: tempCalcFunc2.php

 <?php

 $tempInput = $_POST['temp'];

 $cond = $_POST['type'];

 $newTemp = 0;

 function Celsius($temp)

 {

 $temp = ((($temp*9)/5)+32);

 return($temp);

 }

 function Fahrenheit($temp)

 {

 $temp = ((($temp-32)*5)/9);

 return($temp);

 }

 if($cond == "1")

 {

 $newTemp = celsius($tempInput);

 echo("The temperature in Fahrenheit is " . $newTemp.".");

 }

 else if($cond == "2")

 {

 $newTemp = fahrenheit($tempInput);

 echo("The temperature in Celsius is " . $newTemp.".");

 }

 ?>

 <form action="chap6Lab2_Sol.php">

 <input type="submit" value="Return" />

 </form>

 [image:]

 Figure 6.26: Complete code listing for tempCalcFunc2.php as viewed in Komodo Edit.

 [bookmark: _Toc387669700][bookmark: _Toc387670058][bookmark: _Toc387671747][bookmark: _Toc387672089]Code Listing: chap6Lab2_Sol.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Chapter 6 Lab Exercise 2</title>

 </head>

 <body>

 <form action="tempCalcFunc2.php" method="post">

 <table>

 <tr>

 <td colspan=2>Enter the temperature value and choose
if it’s in Celsius or Fahrenheit:</th>

 </tr>

 <tr>

 <td>Temperature</th>

 <td align="left"><input type="text" name="temp"/></td>

 </tr>

 <tr>

 <td>Celsius

 <input type="radio" name="type" value="1"/></th>

 <td>Fahrenheit

 <input type="radio" name="type" value="2"/></th>

 </tr>

 <tr>

 <td align="left"><input type="submit" value="Submit"/></td>

 <td align="left"><input type="reset" value="Clear"/></td>

 </tr>

 </table>

 </form>

 </body>

 </html>

 [image:]

 Figure 6.27: Complete code listing for chap6Lab2_Sol.php as viewed in Komodo Edit.

 Output: Conversion from Celsius to Fahrenheit.

 [image:]

 Figure 6.28: Output for Chapter 6 Lab Solution default page. The text box accepts the temperature value of 50 degrees Celsius.

 [image:]

 Figure 6.28: Output after clicking the submit button: 50 degrees Celsius is converted to 122 degrees Fahrenheit.

 Output: Conversion from Fahrenheit to Celsius.

 [image:]

 Figure 6.29: Chapter 6 Lab Solution default page. The text box accepts the temperature value of 50 degrees Fahrenheit.

 [image:]

 Figure 6.30: After clicking the submit button, 50 degrees Fahrenheit is converted to 10 degrees Celsius.

 [bookmark: _Toc387669701][bookmark: _Toc387670059][bookmark: _Toc387671748][bookmark: _Toc387672090]Chapter Summary:

 In this chapter, we covered only the fundamentals of functions, namely:

 a. how to call or execute functions

 b. how to create your own functions

 c. how to organize your functions among several function container files

 d. how to include the functions in function container files into your PHP scripts

 e. how to pass arguments into a function’s parameters, and

 f. how to return a value from a function

 In the next chapter we will discuss Server-File Input-Output. You will learn how files in the server are manipulated and be introduced to the different commands and functions used to perform these file processes.

 [bookmark: _Toc387669702][bookmark: _Toc387670060][bookmark: _Toc387671749][bookmark: _Toc387672091]Chapter 7: Server File I/O

 [bookmark: _Toc387669703][bookmark: _Toc387670061]Chapter Objectives:

 	You will be able to define what server files are.

 	You will be able to describe the rudiments of server files.

 	You will learn how to access files on the server: read, write, open, close, append and delete.

 	You will be able to describe what CSV files are and how to manipulate and organize these files into a usable form.

 [bookmark: _Toc218925135][bookmark: _Toc387669704][bookmark: _Toc387670062][bookmark: _Toc387671750][bookmark: _Toc387672092]7.1 Serving Files on the Server

 When we talk about files, we think of database files which are a compilation of tables consisting of identically formatted records. In web development, the word file is not limited to database files, as almost anything that appears more than once in a webpage automatically comprises a file.

 When you visit Gmail or Yahoo Mail for instance, the aggregate user signups will constitute the user files. The emails that are stored in each of these accounts comprise the messages file. Collections of pictures, videos, and music on a webpage are all files, too.

 The same goes for social networking sites such as Facebook, Twitter, LinkedIn, and Instagram. Most information found on their websites—including the comments, chats, and private messages—are all files. So are “likes” and all other postings. These files reside inside the server hosting these websites and get manipulated—read, written, opened, closed, appended and deleted—as the needs arise.

 Commercial and business sites such as Oracle, Adobe, Linux, and Microsoft, including banking establishments and e-commerce portals, keep and treat almost all webpages, URL elements, and information as files.

 Therefore, almost all website information is stored as files, which are then classified according to use, privilege, and security. Altogether they comprise an information database.

 Now that we have a broad understanding of what server files are and what comprises a server file, what does the term file I/O or file input or output mean in the context of PHP?

 In PHP, file input/output concerns accessing files only on the server—not on the local machine of the web browser. Primarily for security reasons, we cannot let PHP scripts access any of the files on a local machine.

 Here is a list of functions that are introduced in this chapter and are used in PHP server file input/output operations:

 	 Function

 	 Description

 	 Arguments

 	 fopen()

 	 Opens a file.

 	 File pointer, access mode

 	 fclose()

 	 Closes a file.

 	 File pointer, access mode

 	 fwrite()

 	 Writes into a file that was opened in the server.

 	 File pointer, resource file

 	 fgets()

 	 Reads a single line from a file.

 	 Resource file, character size

 	 fgetc()

 	 Reads a single character from a file.

 	 Resource file

 	 file_get_contents()

 	 Reads entire file into a string.

 	 Resource file, character size

 	 fread()

 	 Reads from an open file.

 	 File pointer, character size

 	 fgetcsv()

 	 Reads saved CSV files.

 	 File pointer, character size

 	 foef()

 	 Checks if the “end of file” has been reached.
 Limitations: files opened in w, a, x modes cannot be read.

 	 File pointer

 	 unlink()

 	 Deletes files.

 	 Resource file

 	 Or die()

 	 Terminates a program if an error is encountered during the input or output process. Usually connected to the function fopen.

 	 String parameter

 	 filesize()

 	 Gets the file size in bytes.

 	 Null or integer value

 Table 7.1 List of commands and functions introduced.

 Some file functions require specific modes as one of their arguments. These modes specify the type of access. Here is a list of modes used in PHP when calling the fopen() function.

 	 Mode

 	 Description

 	 r

 	 Opens the file for reading only. The file pointer is positioned at the beginning of the file.

 	 r+

 	 Opens the file for reading and writing. The file pointer is positioned at the beginning of the file.

 	 w

 	 Opens the file for writing only. Opens and clears the contents of files or creates a new file if it does not exist. In either case, you have a new empty file for writing data and the file pointer is positioned at the beginning of the file.

 	 w+

 	 Opens the file for reading and writing. Opens and clears the contents of files or creates a new file if it does not exist. The file pointer is positioned at the beginning of the file.

 	 a

 	 Opens the file for appending (writing). Writes data to the end of an existing file. Creates a new file if it doesn’t exist. The file pointer is positioned at the end of the file.

 	 a+

 	 Opens the file for appending (writing) and reading. Writes data to the end of an existing file. Creates a new file if it doesn’t exist. The file pointer is positioned at the end of the file.

 	 x

 	 Opens the file for writing only. Creates a new file. Returns FALSE and an error if the file already exists.

 	 x+

 	 Opens the file for reading and writing. Creates a new file. Returns FALSE and an error if file already exists.

 Table 7.2 PHP file access modes.

 We will begin our examples with a script that writes data to a text file and then a script which will retrieve the contents of that same text file.

 Problem: Code a PHP script that writes data, consisting of names, to a text file.

 Solution:

 Step 1: Begin by using Komodo Edit to create a new PHP document using the HTML document template.

 [image:]

 Figure 7.1: Creating a new HTML template to be named fileIO_1.php in Komodo Edit.

 Step 2: Save the file in your www or htdocs folder under the name fileIO_1.php

 Step 3: The name of the file we will write to is “names.txt” and we will store this filename in the variable $fileName.

 <!DOCTYPE html>

 <html>

 <head>

 <title>Saving Files into the Server</title>

 </head>

 <body>

 <?php

 $fileName = "names.txt";

 Step 4: Next we will access “names.txt” by using the fopen() function which takes two arguments, the filename, and the mode. This is the correct format for the fopen() function.

 fopen($fileName, ‘w’)

 The mode that we use is ‘w’ which means to open the file for writing only.

 Now, the fopen() function returns a file handle which, among other uses, is a pointer associated with the file we opened and which we use to access the file’s contents. We will store the file handle in the variable $fp. Our updated format for the fopen() function is now:

 $fp = fopen($fileName, ‘w’)

 Tip: File handles are resource data types which is one of the eight PHP data types. The file handle and not the filename is the primary means by which we perform input and output operations on the file. Every file that our program accesses must be assigned a unique file handle.

 The fopen() function is usually connected with the command or die, which terminates the program and displays the error message “Can’t open the file” if an error is encountered during the execution of the fopen() function. Our final program statement for the fopen() function is:

 $fp = fopen($fileName, 'w') or die ("Can't open the file.");

 Now that the fopen() function has successfully accessed names.txt by returning a file handle to it, we can start writing data to it. When we have completed writing data to it, we use the fclose() function.

 Every fopen() function must have a matching fclose() function. Failing to close a file properly with the fclose() function after accessing the file with the fopen() function could lead to some data corruption problems.

 When you call the fclose() function, the server’s file input-output system performs critical housekeeping tasks on the file. It could perform these housekeeping tasks during the various read, write, and update tasks on the file, but that would be grossly inefficient.

 Step 5: Now, we call the fclose() function, providing the file handle as the function’s required argument.

 fclose($fp);

 Step 6: Close the script and the HTML document.

 ?>

 </body>

 </html>

 This is how the complete code listing will look:

 [bookmark: _Toc387669705][bookmark: _Toc387670063][bookmark: _Toc387671751][bookmark: _Toc387672093]Code Listing: fileIO_1.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Saving Files into the Server</title>

 </head>

 <body>

 <?php

 $fileName = "names.txt";

 $fp = fopen($fileName, 'w') or die ("Can't open the file.");

 fclose($fp);

 ?>

 </body>

 </html>

 [image:]

 Figure 7.2: Initial code listing for fileIO_1.php as seen in Komodo Edit.

 We now have the skeleton of most PHP input/output programs. In this skeleton, we specify the filename, call the fopen() function and then call the fclose() function.

 Now, let’s write the PHP code that actually writes data to the file name.txt. We declare a list of names and save it as an array, then create a loop that will iterate through the array.

 Step 7: Using the array function, create an array (referenced by the variable $name) whose members are the names John, Guile, Lily, Ervin, Adam, Mary, and Irene.

 $name = array("John", "Guile", "Lily", "Ervin", "Adam", "Mary", "Irene");

 Step 8: Now, we will store the names in array variable$name in the file name.txt We do this by looping through each member of the array and using the fwrite() function to write each name. At the end of each name, we append the line-feed character “\n”. The line-feed character indicates where one name ends and another begins. It also indicates where we want a new line to begin.

 for($i = 0; $i<=count($name); $i++) {

 fwrite($fp, $name[$i] . "\n");

 }

 The fwrite() function requires two arguments. First is the file handle, $fp, of the file fwrite() will write to. Second is the data to be written – the array member, $name[$i].

 This is how the complete code listing should look:

 [bookmark: _Toc387669706][bookmark: _Toc387670064][bookmark: _Toc387671752][bookmark: _Toc387672094]Code Listing: Appended fileIO_1.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Saving Files into the Server</title>

 </head>

 <body>

 <?php

 $fileName = "names.txt";

 $fp = fopen($fileName, 'w') or die ("Can't open the file");

 $name = array("John", "Guile", "Lily", "Ervin", "Adam", "Mary", "Irene");

 for($i = 0; $i<=count($name); $i++) {

 fwrite($fp, $name[$i] . "\n");

 }

 fclose($fp);

 ?>

 </body>

 </html>

 [image:]

 Figure 7.3: Complete code listing for fileIO_1.php as seen in Komodo Edit.

 We’ll run the program now only to check if the names.txt file was actually saved or written in your local server. Make sure you have saved your fileIO_1.php file.

 Run fileIO_1.php from your local browser. For now, disregard any error message that displays.

 [image:]

 Figure 7.4: Output for fileIO_1.php when first ran.

 Now that the page is running, we can check our special htdocs or www folder to look for the file names.txt.

 Open your wamp/www or mamp/htdocs folder:

 [image:]

 Figure 7.5: Names.txt opened through document browser.

 Click on the filename and select “view using Notepad”. Take note that when you open the text file it will display the names as a continuous single word text, as Notepad ignores the line feed character.

 [image:]

 Figure 7.6: Names.txt viewed using Notepad.

 Try viewing the names.txt file using another application such as WordPad and you will notice it displays the array members as a list:

 [image:]

 Figure 7.7: names.txt viewed using WordPad.

 Here we can see the effect of the line feed character we appended to each name before writing that name to the text file using the fwrite() function:

 fwrite($fp, $name[$i] . "\n");

 WordPad interpreted the line feed character as an indicator to begin a new line. On the other hand, Notepad ignores the line feed character.

 [bookmark: _Toc387669707][bookmark: _Toc387670065][bookmark: _Toc387671753][bookmark: _Toc387672095]7.2 Reading Files on the Server

 Now that the file names.txt has been written, or saved in the server, we are going to retrieve its contents. We will use three of PHP’s frequently used file data retrieval functions, fread(), file_get_contents(), and fgets().

 The fread() function reads a string of characters from a file. It requires two arguments: a file handle (of resource data type) and the number of characters to read (of integer data type). An example is:

 $string = fread($fp, 20);

 In that example, 20 characters are read from the file pointed to by the file handler $fp and then stored in the variable $string. After this, the file pointer will be positioned at the 21st character in the file.

 Problem: Read the entire contents of the file names.txt using the fread() function.

 Solution:

 Step 1: Open fileIO_1.php in Komodo Edit and delete all program statements between the calls to the fopen() and fclose() functions.

 Step 2: Change the text between the <title> tags from “Saving Files into the Server” to “Reading Files from the Server.”

 Step 3: In the call to the function fopen(), change the second argument, the mode, from ‘w’ to ‘r’. The ‘r’ parameter means that we will access the file just to read its data.

 [image:]

 Figure 7.8: The program fileIO_1.php as reproduced from Figure 7.2 which we will save as readFile_1.php. All code between the calls to fopen() and fclose() has been removed.

 Step 4: Save your document as readfile_1.php. This is how your code listing should look after this step:

 [bookmark: _Toc387669708][bookmark: _Toc387670066][bookmark: _Toc387671754][bookmark: _Toc387672096]Code Listing: readFile_1.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Reading Files From The Server</title>

 </head>

 <body>

 <?php

 $fileName = "names.txt";

 $fp = fopen($fileName, 'r');

 fclose($fp);

 ?>

 </body>

 </html>

 [image:]

 Figure 7.9: Complete code listing for readFile_1.php as seen in Komodo Edit.

 Step 5: Just after the call to fopen(), type the call to fread().

 $string = fread($fp, 20);

 This is how the complete code listing should look:

 [bookmark: _Toc387669709][bookmark: _Toc387670067][bookmark: _Toc387671755][bookmark: _Toc387672097]Code Listing: readFile_2.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Reading Files From The Server</title>

 </head>

 <body>

 <?php

 $fileName = "names.txt";

 $fp = fopen($fileName, 'r');

 $string = fread($fp, 20);

 fclose($fp);

 echo($string);

 ?>

 </body>

 </html>

 [image:]

 Figure 7.10: Complete code listing for readFile_2.php.

 If we run the script, this is what the output will be:

 [image:]

 Figure 7.11: Output of readFile_2.php when ran.

 As you can see, not all the names were displayed in the browser because fread() retrieved only 20 characters, as we commanded it to do. To know exactly how many bytes to read from a file, we need the filesize() function, which will tell us exactly how many bytes are in a particular file.

 Step 1: Create a new file and name it as readFile_3.php. Copy the code written in readFile_2.php exactly.

 Step 2: Locate the line which contains the call to fread(). Modify it from:

 $string = fread($fp, 20);

 to:

 $string = fread($fp, filesize($fileName));

 Note that the filesize() function accepts one argument, the file handle of the file it will access.

 Step 3: Check your whole code listing. Your updated code listing must now be:

 <!DOCTYPE html>

 <html>

 <head>

 <title>Reading Files From The Server</title>

 </head>

 <body>

 <?php

 $fileName = "names.txt";

 $fp = fopen($fileName, 'r');

 $string = fread($fp, filesize($fileName));

 fclose($fp);

 echo($string);

 ?>

 </body>

 </html

 [image:]

 Figure 7.12: Complete code listing for readFile_3.php.

 Step 4: Run the script and view your output.

 [image:]

 Figure 7.13: Output of readFile_3.php when run.

 As you can see, the entire content of names.txt now gets displayed in the browser.

 Let’s read another text file still using the fread() and filesize() functions.

 Step 5: Create a new text file consisting of ten animal names and their corresponding scientific names as listed in the following table values. Save the new text file as names_2.txt. Make sure you save your new text file inside your www or htdocs folder.

 	 Common Name

 	 Scientific Name

 	 Ant

 	 Hymenopterous formicidae

 	 Bat

 	 Chiroptera

 	 Bear

 	 Ursidae Carnivora

 	 Camel

 	 Camelus Camelidae

 	 Cat

 	 Felis Catus

 	 Dog

 	 Canis Familiaris

 	 Frog

 	 Anura Ranidae

 	 Lion

 	 Panthera Leo

 	 Sheep

 	 Bovidae Ovis

 	 Tiger

 	 Panthera Tigris

 Table 7.3: List of names for names_2.txt

 You may use Komodo Edit to create and save your names_2.txt file.

 [image:]

 Figure 7.14: names_2.txt file created using Komodo Edit.

 Step 6: Change the line which assigns the string “names.txt” to the variable $fileName from:

 $fileName = "names.txt";

 to:

 $fileName = "names_2.txt";

 This is how your complete code listing should now look.

 <!DOCTYPE html>

 <html>

 <head>

 <title>Reading Files From The Server</title>

 </head>

 <body>

 <?php

 $fileName = "names_2.txt";

 $fp = fopen($fileName, 'r');

 $string = fread($fp, filesize($fileName));

 fclose($fp);

 echo($string);

 ?>

 </body>

 </html

 Step 7: Save your file.

 Step 8: Run your code and display the output.

 [image:]

 Figure 7.15: Output of readFile_3.php when run.

 [image:]

 Figure 7.16: Output of readFile_3.php when run, viewed on full screen.

 Figure 7.16 is a full screen version of Figure 7.15. Notice that whether your browser is shrunk, stretched, resized or maximized, you will see the common and scientific animal names displayed as one continuous line of text.

 Now, let’s use the file_get_contents() function to read names_2.txt. This function reads the contents of an entire file into a string without using a file handle. Therefore, we don’t need to call the fopen() or fclose() functions.

 Step 1: Create a new HTML5 document template and name the file readFile_4.php. Save it in your www or htdocs folder.

 Step 2: Type the following code exactly as you see here.

 [bookmark: _Toc387669710][bookmark: _Toc387670068][bookmark: _Toc387671756][bookmark: _Toc387672098]Code Listing: readFile_4.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Reading Files From The Server</title>

 </head>

 <body>

 <?php

 $file = "names.txt";

 $string = file_get_contents($file);

 echo($string);

 ?>

 </body>

 </html>

 You can see that our code is much simpler. We do not have to call the fopen() and fclose() functions. We just call the file_get_contents() function with two arguments: the name of the file we want to read and a Boolean value of either true or false.

 The Boolean parameter TRUE in the $string assignment statement simply means to include the path in accessing the file. Since both our script and text files are in the www or htdocs folder, this second parameter has no effect.

 Tip: The file_get_contents() function can accept up to five parameters. The first, the filename, is required, while the remaining four are optional. You can check out http://www.php.net/file_get_contents for more details on this function.

 [image:]

 Figure 7.17: Code listing for readFile_4.php.

 Step 3: Save your file and run your output.

 [image:]

 Figure 7.18: Output of readFile_4.php when ran.

 The file_get_contents() function extracted the entire file content all at once and only in a matter of a few command lines.

 Now, we will use the fgets() function to read our files. This function requires a file handle and so we will have to open the file with fopen() and then eventually close it with fclose(). Now, fgets() reads bytes from a file until it encounters a line-feed character or the end-of-file marker. It then stops reading bytes and leaves the file pointer at the character right after the line-feed character it encountered.

 Step 1: Open an HTML5 document template and save this program as readFile_5.php in your www or htdocs folder.

 Step 2: Start off your code by including the PHP script tags.

 <!DOCTYPE html>

 <html>

 <head>

 <title>Reading Files From The Server</title>

 </head>

 <body>

 <?php

 Step 3: Store the string “names.txt” in the variable $fileName.

 $fileName = "names.txt";

 Step 4: Call the fopen() function using read mode.

 $fp = fopen($fileName, 'r');

 Step 5: Call the fgets() function using the file handler variable $fp as the function’s argument. We store the bytes that fget() will read from the file in the variable $string.

 $string = fgets($fp);

 Step 6: Call fclose() and display the contents of $string with the echo() function.

 fclose($fp);

 echo($string);

 Step 7: Close the PHP script tag and the HTML document. Be sure to save your document.

 ?>

 </body>

 </html>

 Step 8: Your complete code listing should look like this:

 [bookmark: _Toc387669711][bookmark: _Toc387670069][bookmark: _Toc387671757][bookmark: _Toc387672099]Code Listing: readFile_5.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Reading Files From The Server</title>

 </head>

 <body>

 <?php

 $fileName = "names.txt";

 $fp = fopen($fileName, 'r');

 $string = fgets($fp);

 fclose($fp);

 echo($string);

 ?>

 </body>

 </html>

 Step 9: Run your script.

 [image:]

 Figure 7.19: Output readFile_5.php when run.

 You should see ‘John’ displayed in your browser.

 Now let’s use the same script to read the file names_2.txt.

 Step 1: With readFile_5.php still open in Komodo Edit, store the string “names_2.txt” in the variable $fileName.

 $fileName = "names_2.txt";

 Step 2: Click on File >Save As... > and save the file as readFile_6.php.

 [image:]

 Figure 7.20: Save as dialogue box.

 [image:]

 Figure 7.21: Saving readFile_5.php as readFile_6.php.

 Step 3: Run your script.

 [image:]

 Figure 7.22: Output of readFile_6.php when ran.

 You should see “Ant => Hymenopterous formicidae” in the browser.

 Now, fgets() reads bytes from a file until it encounters a line-feed character or the end-of-file marker. It then stops reading bytes and leaves the file pointer at the character right after the line-feed character it encountered. So how can we read the entire file using the fgets() function?

 We use a while-loop where we use the boolean feof() function as our conditional expression. This function returns TRUE if the end-of-file marker has been reached.

 Step 1: Create a new HTML5 document template. Include the PHP block script tags and name the file readFile_7.php.

 <!DOCTYPE html>

 <html>

 <head>

 <title>Reading Files From The Server</title>

 </head>

 <body>

 <?php

 Step 2: Store the string “names.txt” in the variable $fileName.

 $fileName = "names.txt";

 Step 3: Call the fopen() function using read mode.

 $fp = fopen($fileName, 'r');

 Step 4: Initialize $string to the empty string “”.

 $string = "";

 We need to do this because each time fgets() reads a line from the file we are accessing, we will append this line to $string. Initializing $string to an empty string makes sure that we are appending strings to strings.

 Step 5: Create the while-loop.

 while(!feof($fp))

 {

 $string .= fgets($fp, 256);

 $string .= "
";

 }

 Step 6: Close the file pointer.

 fclose($fp);

 Step 7: Display the file.

 echo($string);

 Step 8: Close the PHP script tag and the HTML document.

 ?>

 </body>

 </html>

 Step 9: This is how the complete code listing will look:

 [bookmark: _Toc387669712][bookmark: _Toc387670070][bookmark: _Toc387671758][bookmark: _Toc387672100]Code Listing: readFile_7.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Reading Files From The Server</title>

 </head>

 <body>

 <?php

 $file = "names.txt";

 $fp = fopen($file, 'r');

 $string = "";

 while(!feof($fp))

 {

 $string .= fgets($fp, 256);

 $string .= "
";

 }

 fclose($fp);

 echo($string);

 ?>

 </body>

 </html>

 Step 10: Run the script.

 [image:]

 Figure 7.23: Output for readFile_7.php.

 Each name is displayed on a different line.

 Now, let’s adjust the script to read names_2.txt. Store the string “names_2.txt” in the variable $fileName and then save the entire script as readFile_8.php. This is the complete code listing:

 [bookmark: _Toc387669713][bookmark: _Toc387670071][bookmark: _Toc387671759][bookmark: _Toc387672101]Code Listing: readFile_8.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Reading Files From The Server</title>

 </head>

 <body>

 <?php

 $file = "names_2.txt";

 $fp = fopen($file, 'r');

 $string = "";

 while(!feof($fp))

 {

 $string .= fgets($fp, 256);

 $string .= "
";

 }

 fclose($fp);

 echo($string);

 ?>

 </body>

 </html>

 Run readFile_8.php and view the output.

 [image:]

 Figure 7.24: Output for readFile_8.php.

 Here we have the complete list of animals and their scientific names as contained in the file names_2.txt.

 [bookmark: _Toc387669714][bookmark: _Toc387670072][bookmark: _Toc387671760][bookmark: _Toc387672102]7.3 Append and Delete

 Appending files in the server means the ability to add data to files. This new data is added to the end of the file, thus the term ‘append’. Modifying or editing data that already exists in the file is more complicated and will not be discussed here.

 To append or delete files, the file has to be opened first. The function used to open files is the familiar fopen() but with the mode set to ‘a’ which stands for ‘append’.

 Fwrite(), which we first used in our first example, fileIO_1.php, is the function we will use to append data to a server file. The function requires two arguments: the file pointer and the string of data to be written or appended to the file.

 (Note also that in that first example, fileIO_1.php, we called fopen() with a ‘w’ mode. But here, we call fopen() with the ‘a’ mode. Why do you think that is?)

 Now, let’s diverge for a second and check to make sure that our WAMP server is still running and online. This is what we should see:

 [image:]

 Figure 7.25: WAMP server menu.

 Step 1: Create a new PHP file using the HTML5 template and save it in the www or htdocs folder. Save the file as appendFile.php.

 Step 2: Embed the opening and closing PHP tags, declare the filename variable $fileName and call the fopen() function in mode ‘a’. This should be your code:

 <!DOCTYPE html>

 <html>

 <head>

 <title>Appending Files in the Server</title>

 </head>

 <body>

 <?php

 $fileName = "names.txt";

 $fp = fopen($fileName, 'a');

 Step 3: We will be adding the names “John” and “Jane” to the file “names.txt” but first we store those names in the variables $name1 and $name2 respectively.

 $name1 = "John";

 $name2 = "Jane";

 Step 4: Call the fwrite() function with the correct number and sequence of arguments: the file handle and the string of data. Append a line-feed character to each name that we will append.

 fwrite($fp, $name1 . "\n");

 fwrite($fp, $name2 . "\n");

 Step 5: Go back to the call to fopen() and add the ‘or die’ clause to warn the user if the file names.txt does not exist.

 $fp = fopen($file, 'a') or die ("Can't Open The File");

 Step 6: Close the file pointer.

 fclose($fp);

 Step 7: Add an echo statement that will notify the user that the new data has been appended.

 echo("names.txt has been overwritten!")

 Step 8: Close the PHP script and the HTML document and save your file again.

 ?>

 </body>

 </html>

 Step 9: The complete code listing should now look like this:

 [bookmark: _Toc387669715][bookmark: _Toc387670073][bookmark: _Toc387671761][bookmark: _Toc387672103]Code Listing: appendFile.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Appending and Deleting Files from the Server</title>

 </head>

 <body>

 <?php

 $file = "names.txt";

 $fp = fopen($file, 'a') or die ("Can't Open The File");

 $name1 = "John";

 $name2 = "Jane";

 fwrite($fp, $name1 . "\n");

 fwrite($fp, $name2 . "\n");

 fclose($fp);

 echo("New Data Has Been Added!")

 ?>

 </body>

 </html>

 Step 10: Run your script.

 You should see the message “New Data Has Been Added”, but let’s access the file names.txt directly and see if the names “John” and “Jane” have indeed been added. Use Komodo Edit or any text editor to open the file names.txt.

 [image:]

 Figure 7.26: Verifying names.txt for the newly appended names “John” and “Jane.”

 [image:]

 Figure 7.27: Viewing content of names.txt file from Komodo Edit.

 [image:]

 Figure 7.28: Viewing content of names.txt file from Notepad.

 Now the two names “John” and “Jane” have been added into the names.txt file.

 Now let’s delete a file from the server using the unlink() function, which accepts the complete filename of the file we intend to delete as its required first argument. For example:

 unlink("filename.ext");

 It’s that simple. There is no need for a file handle, hence no need to use fopen() and fclose().

 But first, let’s create the file that we will delete. It will be a simple text file, named deletedMessage.txt, containing the text “This file will be deleted from the server.” We will create and save it in the www or htdocs folder.

 Step 1: Using your text editor, click on New File and select Text. Choose the directory C:\wamp\www and type in the filename deletedMessage.txt. Click Open.

 Step 2: In the text editor, type “This file will be deleted from the server.” Save the file.

 [image:]

 Figure 7.29: Content of deletedMessage as seen in Komodo Edit.

 Now the file deletedMessage is saved on the server.

 Look through the www or htdocs folder to check if the text file was successfully saved.

 [image:]

 Figure 7.30: Viewing the file deletedMessage.txt from the local browser.

 The text file can also be saved using Notepad.

 [image:]

 Figure 7.31: Creating the file deletedMessage.txt using Notepad.

 Make sure you save this file inside the www or htdocs folder.

 [image:]

 Figure 7.32: Local Disk (C:) > wamp > www folder.

 [image:]Figure 7.33: The file deletedMessage.txt was saved using Notepad.

 Step 3: Create a new HTML5 document template and type the following code exactly as it appears here:

 [bookmark: _Toc387669716][bookmark: _Toc387670074][bookmark: _Toc387671762][bookmark: _Toc387672104]Code Listing: viewDeleteFile.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Deleting Files from the Server</title>

 </head>

 <body>

 <?php

 unlink("deletedMessage.txt");

 echo("</br> deletedMessage.txt has been deleted!")

 ?>

 </body>

 </html>

 Step 4: Save the script with the filename viewDeleteFile.php and run it:

 [image:]

 Figure 7.34: Output of viewDeleteFile.php when ran.

 Now, check the www or htdocs folder and see if the file deletedMessage.txt is still there. Here is the view of c:\wamp\www folder—as you can see, the file is no longer there.

 [image:]

 Figure 7.35: View of c:\wamp\www folder, deletedMessage.txt is no longer there.

 [bookmark: _Toc387669717][bookmark: _Toc387670075][bookmark: _Toc387671763][bookmark: _Toc387672105]7.4 CSV Files

 CSV files, or Comma-Separated Value files, are text files consisting of strings or values separated by commas. This is an example of a CSV file (which we will use in our sample PHP scripts later) named deliveredItems.csv :

 m-000, meat, $12.00, 10

 v-000, veggies, $2.50, 12

 d-000, dairy, $1.50, 3

 c-000, condiments, $1.00, 9

 f-000, packaged mixed fruit, $3.00, 7

 s-000, spices,$1.75, 1

 CSV files are a very common and popular text document structure and are mainly used in converting data from one software format to another, for example, converting data from an Excel spreadsheet to a MySQL database or vice versa. In this situation, the data is first “exported” from either Excel or MySQL into a CSV file which is then “imported” into either MySQL or Excel.

 In a CSV file, one line of text (terminated by a line-feed character) corresponds to one data record. Each comma-separated string corresponds to a field or column in that data record.

 If the contents of deliveredItems.csv were to be imported into a database table, it would look something like this:

 	 Category Number

 	 Description

 	 Unit Price

 	 Quantity (boxes)

 	 m-000

 	 meat

 	 $12.00

 	 10

 	 v-000

 	 veggies

 	 $2.50

 	 12

 	 d-000

 	 dairy

 	 $1.50

 	 3

 	 c-000

 	 condiments

 	 $1.00

 	 9

 	 f-000

 	 packaged mixed fruit

 	 $3.00

 	 7

 	 s-000

 	 spices

 	 $1.75

 	 1

 Table 7.4: Listing for deliveredItems.csv.

 PHP has a special function, fgetcsv(), which reads a line from a CSV file and then parses the comma-separated string values into an array. That is, each comma-separated string becomes an element of the array.

 But first, let’s use Komodo Edit to create the CSV file deliveredItems.csv. This is the file we will read using the fgetcsv() function.

 CSV files are easily created by simply separating each field record string by commas and terminating each line by putting the next set of elements on a new line—or by pressing the return key after the last element in the line. We then save the file with the extension name .csv.

 Step 1: Using Komodo Edit, open a new text file in the c:\wamp\www or c:\wamp\htdocs folder.

 [image:]

 Figure 7.36: Creating deliveredItems.csv using Komodo Edit.

 Step 2: Type in the previously shown contents of deliveredItems.csv, as in the following screenshot, and save the file.

 [image: figure 7.45.PNG]

 Figure 7.37: deliveredItems.csv just created.

 The new column shown to the right side of the code listing area is called a Minimap. You can keep it from being displayed by clicking on “View” from the file menu then unchecking “View Minimap.”

 [image:]

 Figure 7.38: Where to uncheck “View Minimap” in Komodo Edit.

 You get this final view of your file.

 [image: figure 7.47.PNG]

 Figure 7.39: Plain view of deliveredItems.csv in Komodo Edit.

 You may resize your window if you want, as has been done here, to see the images more clearly.

 [image: figure 7.45.PNG]

 Figure 7.40: Resized view of Komodo Edit window.

 Now, we are going to write a script that will read the entire contents of deliveredItems.csv and display each line as a row in a table and display each comma-separated value in a line as a cell in a table.

 Step 3: Create a new PHP file using the HTML5 template. Save the file as readCSV.php. Embed the PHP opening script tags.

 <!DOCTYPE html>

 <html>

 <head>

 <title>Reading CSV files</title>

 </head>

 <body>

 <?php

 [image:]

 Figure 7.41: Creating a new HTML5 template for readCSV.php.

 Step 4: Store the string “deliveredItems.csv” in the variable $fileName.

 $fileName = "deliveredItems.csv";

 Step 5: Call the fopen() function to access deliveredItems.csv in ‘r’ mode. Store the returned file handle in the variable $fp.

 $fp = fopen($fileName, 'r');

 At this point, this is how your code should look:

 <!DOCTYPE html>

 <html>

 <head>

 <title>Reading CSV files</title>

 </head>

 <body>

 <?php

 $file = "deliveredItems.csv";

 $fp = fopen($file, 'r');

 ?>

 </body>

 </html>

 Now, we are going to read deliveredItems.csv one line at a time by utilizing a while-loop. As we read a line, we will format the comma-separated values in that line into a row of a table and then append that row into the variable $output, which will eventually contain all the rows we have constructed.

 Step 6: Initialize the variable $output to the empty string “” just before the while-loop.

 $output = "";

 Step 7: Now declare the while-loop with the conditional expression !feof($fp)).

 while(!feof($fp))

 Step 8: The first statement in the while-loop is a call to the function fgetcsv() which will read one line from deliveredItems.csv and then store each comma-separated value in that line as an element in the array $inventory.

 $inventory = fgetcsv($fp, 1024);

 At this point, your code should look like this:

 $output = "";

 while(!feof($fp))

 {

 $inventory = fgetcsv($fp, 1024);

 After each call to fgetcsv(), $inventory will hold an array of four elements. These four elements correspond to the four comma-separated values in one line of deliveredItems.csv.

 m-000, meat, $12.00, 10

 Step 9: We will display the four elements of $inventory in a row (consisting of four cells) of a table. The following code builds the row of the table.

 $line = "";

 $line .= "<tr>";

 $line .= "<td align='center'>" . $inventory[0] . "</td>";

 $line .= "<td align='center'>" . $inventory[1] . "</td>";

 $line .= "<td align='center'>" . $inventory[2] . "</td>";

 $line .= "<td align='center'>" . $inventory[3] . "</td>";

 $line .= "</tr>";

 Step 10: Once a row has been built, it is appended to the variable $output which will eventually contain all the rows of the table.

 $output .= $line;

 Note that we initialized $output to the empty string “” before we entered the loop.

 Step 11: When the while-loop terminates (because it has reached the end-of-file marker of deliveredItems.csv) we can display the output as a table.

 print("<table border='1' cellpadding='1'>");

 print($output);

 print("</table>");

 Step 12: Close the script tag and the HTML document and save your file again.

 Following is the complete code listing:

 [bookmark: _Toc387669718][bookmark: _Toc387670076][bookmark: _Toc387671764][bookmark: _Toc387672106]Code Listing: readCSV.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Reading CSV files</title>

 </head>

 <body>

 <?php

 $file = "deliveredItems.csv";

 $fp = fopen($file, 'r');

 $output = "";

 while(!feof($fp))

 {

 $inventory = fgetcsv($fp, 1024);

 $line = "";

 $line .= "<tr>";

 $line .= "<td align='center'>" . $inventory[0] . "</td>";

 $line .= "<td align='center'>" . $inventory[1] . "</td>";

 $line .= "<td align='center'>" . $inventory[2] . "</td>";

 $line .= "<td align='center'>" . $inventory[3] . "</td>";

 $line .= "</tr>";

 $output .= $line;

 }

 print("<table border='1' cellpadding='1'>");

 print($output);

 print("</table>");

 ?>

 </body>

 </html>

 [image:]

 Figure 7.42: Complete code listing of readCSV.php in Komodo Edit.

 Step 13: Run your program and view your output.

 [image: figure 7.51.PNG]

 Figure 7.43: Output of readCSV.php when ran.

 Tip: If you want the item description in the table to display as aligned to the left instead of centered, replace the table data <td> value from the readCSV.php code listing to ‘left’ instead of ‘center’.

 [bookmark: _Toc387669719][bookmark: _Toc387670077][bookmark: _Toc387671765][bookmark: _Toc387672107]Chapter Quiz

 1. What does File I/O mean?

 a. File Input and Output.

 b. File In and Out.

 c. File Into and Onto.

 d. File Inside and Outside.

 2. What is the fastest method of retrieving the contents of text files in the server?

 a. file_get_contents

 b. fgets

 c. fread

 d. fopen

 3. What mode does ‘a’ stand for?

 a. Affix.

 b. Append.

 c. Arbitrary.

 d. Apprehend.

 4. What is usually required to append and delete files in the server?

 a. Access to the server.

 b. Permission from the server.

 c. command from the server.

 d. Favor from the server.

 5. What does CSV mean?

 a. Comma-Saturated Values.

 b. Comma-Separated Variables.

 c. Comma-Secluded Variables.

 d. Comma-Separated Values.

 [bookmark: _Toc387669720][bookmark: _Toc387670078][bookmark: _Toc387671766][bookmark: _Toc387672108]Chapter Lab Exercise:

 1. Create an HTML form page that will contain the following entry fields and elements:

 [image:]

 Figure 7.44: Prescribed ‘Form Page 1’ for Chapter 7 Lab Exercise.

 2. As soon as the “submit” button is clicked, the form must redirect to a new form page confirming that the information entered has been saved. This confirmation page must include two buttons: “Add more” and “View all entries.” The “Add more” button will be clicked if the user wishes to add more entries, while the “View all entries” is clicked if the user wants to view already saved data.

 [image:]

 Figure 7.45: Prescribed ‘Form Page 2’ for Chapter 7 Lab Exercise.

 3. Create a sub-program that will store the entered data in a CSV file.

 4. Provide links in each of the pages to allow the user to easily navigate from one page to another.

 5. Display the saved information in table form.

 6. Apply the principles learned using forms, superglobals, server, and CSV files.

 [bookmark: _Toc387669721][bookmark: _Toc387670079][bookmark: _Toc387671767][bookmark: _Toc387672109]Chapter Lab Solution:

 (1) HTML Entry Form Page:

 [bookmark: _Toc387669722][bookmark: _Toc387670080][bookmark: _Toc387671768][bookmark: _Toc387672110]Code Listing: Chap7LabEx.html

 <!DOCTYPE html>

 <html>

 <head>

 <title> Chapter 7 Lab Exercise HTML</title>

 </head>

 <body>

 <form action="Chap7LabExForm.php" method="post">

 <table>

 <tr>

 <th>Last Name:</th>

 <td><input type="text" name="lname" /></td>

 </tr>

 <tr>

 <th>First Name:</th>

 <td><input type="text" name="fname" /></td>

 </tr>

 <tr>

 <th>Phone Number:</th>

 <td><input type="number" name="pnumber" /></td>

 </tr>

 <tr>

 <td><input type="submit" value="Submit" /></td>

 <td><input type="reset" value="Clear"</td>

 </tr>

 </table>

 </body>

 </html>

 [bookmark: _Toc387669723][bookmark: _Toc387670081][bookmark: _Toc387671769][bookmark: _Toc387672111](2)PHP Script- Data Entered Saved Confirmation Page

 [bookmark: _Toc387669724][bookmark: _Toc387670082][bookmark: _Toc387671770][bookmark: _Toc387672112]Code Listing: Chap7LabExForm.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Chapter 7 Lab Exercise PHP</title>

 </head>

 <body>

 <?php

 $lname = $_REQUEST['lname'];

 $fname = $_REQUEST['fname'];

 $pnumber = $_REQUEST['pnumber'];

 $file = "contacts.csv";

 $fp = fopen($file, 'a');

 fwrite($fp, $lname . ",");

 fwrite($fp, $fname . ",");

 fwrite($fp, $pnumber . "\n");

 fclose($fp);

 echo("Information has been saved!</br>");

 ?>

 <form action="Chap7LabEx.html">

 <input type="submit" value="Add more"/>

 </form>

 <form action="Chap7LabExReadCSV.php">

 <input type="submit" value="View all entries">

 </form>

 </body>

 </html>

 (3)PHP Script View Saved CSV File in Table Form

 [bookmark: _Toc387669725][bookmark: _Toc387670083][bookmark: _Toc387671771][bookmark: _Toc387672113]Code listing: Chap7LabExReadCSV.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>Chapter 7 Lab Exercise Read CSV</title>

 </head>

 <body>

 <?php

 $file = "contacts.csv";

 $fp = fopen($file, 'r');

 $table = "";

 while(!feof($fp))

 {

 $list = fgetcsv($fp, 1024);

 $entry = "";

 $entry .= "<tr>";

 $entry .= "<td align='center'>" . $list[0] . "</td>";

 $entry .= "<td align='center'>" . $list[1] . "</td>";

 $entry .= "<td align='center'>" . $list[2] . "</td>";

 $entry .= "</tr>";

 $table .= $entry;

 }

 print("<table border='1'>

 <tr>

 <th>Last Name</th>

 <th>First Name</th>

 <th>Phone Number</th>

 </tr>");

 print($table);

 print("</table>")

 ?>

 <form action="Chap7LabEx.html">

 <input type="submit" value="Add more"/>

 </form>

 </body>

 </html>

 Output:

 [image:]

 Figure 7.46: Output for Chap7LabEx.html when ran.

 [image:]

 Figure 7.47: Output for Chap7LabExForm.php when ran.

 [image:]

 Figure 7.48: Output for Chap7LabExReadCSV.php when ran.

 [image:]

 Figure 7.49: First user information being entered.

 [image:]

 Figure 7.50: First user information submitted.

 [image:]

 Figure 7.51: Saved user information viewed from localhost database.

 [bookmark: _Toc387669726][bookmark: _Toc387670084][bookmark: _Toc387671772][bookmark: _Toc387672114]Chapter Summary:

 In this chapter you learned about PHP functions that perform file input/output operations: creating files, writing data to files, reading data from files, and deleting files.

 As you worked through scripts that performed file input/output operations, you used forms that accepted data and retrieved that form data using superglobal arrays just before saving that data into text files. You also used arrays to display data retrieved from csv formatted files.

 [bookmark: _Toc387669727][bookmark: _Toc387670085][bookmark: _Toc387671773][bookmark: _Toc387672115]Chapter 8: Sending Email with PHP

 [bookmark: _Toc387669728][bookmark: _Toc387670086]Chapter Objectives:

 	You will learn the difference between text email and HTML emails.

 	You will learn how to download and install the phpMailer package.

 	You will learn how to configure WAMPSERVER to work with the phpMailer package.

 	You will write PHP scripts that will send text and HTML emails to a Gmail account using phpMailer.

 [bookmark: _Toc387669729][bookmark: _Toc387670087][bookmark: _Toc387671774][bookmark: _Toc387672116]8.1 Sending Text Email Using PHP

 Have you ever wondered why you’re receiving emails from a return address like noreply@domain.com? Or why someone would send you an email and imply by their email address that you are not supposed to respond? Actually, emails from such addresses are automatically generated and sent by a website that you recently visited. Sometimes they can be a confirmation of receipt, letting you know that an order you placed or an email you sent was received.

 You could have registered on a certain website as a new member and opened an account. The website then sent you an email confirming your registration, requesting you to perform some activities verifying your identity and assigning your username and password which you have the option of changing. On other websites where you are already a registered (as well as a paying member), you will periodically receive email notifications of any activity affecting your account. For example, PayPal.com sends email notifications for every activity that its members conduct on their site: purchases, payments, funds transfers, and so on.

 All these emails are automatically generated by the website application. They have to be automatically created and sent, otherwise a battalion-sized staff would be required to monitor all the activities of all the members of just one website.

 Email sending and receiving requires a properly configured mail server. This is a computer program that functions as a virtual post office. It may run on its own dedicated hardware or share hardware resources with other server programs. It is designed to run automatically during normal operation without any manual intervention.

 There are two types of mail servers: outgoing and incoming mail servers. Outgoing servers handle all sent emails and implement SMTP (Simple Mail Transfer Protocol) while incoming servers process all received emails and implement either POP3 (Post Office Protocol, version 3) or IMAP (Internet Message Access Protocol).

 POP3 incoming servers store sent and received messages on the client’s hard drive. This forces a user to access and process their emails from only one device or location. However, IMAP incoming servers store messages on servers thus allowing users to access their emails from any location or any device.

 Sending and receiving emails entails several levels of communication between incoming and outgoing mail servers, a process that ensures that emails get to their right recipients.

 TIP: To learn more about the nuts and bolts of how email servers transmit and accept email, you can access “How Email Works” at http://computer.howstuffworks.com/e-mail-messaging/email.htm and “How Does Email Work?” at http://www.howtogeek.com/56002/htg-explains-how-does-email-work/.

 PHP allows you to create and send emails directly from a PHP script. This is done through the PHP mail() function. It has six possible arguments, all of the string data type. The first four are mandatory but the last two are optional. This is its syntax:

 bool = mail(string $to, string $subject,

 string $message, string $from,

 [string $headers, string $parameters])

 The table below provides details for each of the six arguments.

 	 Argument

 	 Variable Designation

 	 Description or Function

 	 to

 	 $to

 	 Required. The receiver/receivers of the email. This could be an email address or another domain within a local server.

 	 subject

 	 $subject

 	 Required. This is the main header of the email and a brief description of the contents of the email. It may consist of numbers, strings or a combination of both. It cannot contain any newline characters.

 	 message

 	 $message

 	 Required. This is the actual message. Each line of the message should be separated with a LF (\n). Lines should not exceed 70 characters

 	 from

 	 $from

 	 Required. This is the email address of the sender.

 	 headers

 	 $headers

 	 Optional. This specifies additional headers, like Cc, and Bcc. The additional headers should be separated by CRLF (\r\n) characters.

 	 parameters

 	 $parameters

 	 Optional. This specifies any additional parameters.

 Table 8.1: Arguments for the PHP mail() function.

 The PHP mail() function returns a boolean value of TRUE if the email was successfully sent, FALSE if otherwise.

 Let’s send a simple text email.

 Step 1: Open a blank HTML5 document template in Komodo Edit and save it as simpleE-mail.php.

 Step 2: Inside the <body> section, add the PHP script opening and closing tags.

 <body>

 <?php

 ?>

 </body>

 Step 3: From the table below, encode assignment statements assigning the string values in the second column to the corresponding variables in the first column. For example, for the first row in the table, the line of code should be:

 $to = “someone@e-mail.com”;

 	 Variable Argument

 	 String Value

 	 $to

 	 someone@e-mail.com

 	 $subject

 	 Feedback for you.

 	 $message

 	 This is a test e-mail created using PHP.

 	 $from

 	 test@learntoprogram.tv

 	 $headers

 	 "From:" . $from

 	 Confirmation text

 	 "Mail has been sent!"

 Table 8.2: Arguments list for simplemail.php PHP code list.

 This is how the complete code listing will look:

 [bookmark: _Toc387669730][bookmark: _Toc387670088][bookmark: _Toc387671775][bookmark: _Toc387672117]Code Listing: simpleE-mail.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>A Simple Text e-mail</title>

 </head>

 <body>

 <?php

 $to = "someone@e-mail.com";

 $subject = "Feedback for you.";

 $message = "This is a test e-mail created using php";

 $message .= "from LearnToProgram.tv";

 $from = "test@learntoprogram.tv";

 $headers = "From:" . $from;

 $retval = mail ($to, $subject, $message, $headers);

 if ($retval) {

 echo ("Mail has been sent!");

 } else {

 echo ("Mail has not been sent!")

 }

 ?>

 </body>

 </html>

 Step 4: Save your file and attempt to view your output.

 Now, when you run this script, you will get the following error message shown in the screenshot below.

 [image:]

 Figure 8.1: Output of simpleEmail.php.

 The reason you get this error is because WAMPSERVER does not have a configured mail server as one of its components. So how does an aspiring PHP programmer, with WAMPSERVER installed, get to test PHP scripts that send email?

 Not surprisingly, solutions abound! If you type “How to send email from WAMPSERVER using PHP” in Google search you will find several work-arounds presented by enterprising web programmers. Some of these solutions date back to more than two years ago while one or two are just from this year. (Some of these different solutions even have the same name, “sendmail” which can cause a little confusion!)

 Intuitively, we want to pick not only the latest solution but also a solution easy to implement. Fortunately, we have this in the very popular PHPMailer. Here is a succinct description taken from PHPMailer Tutorial at https://code.google.com/a/apache-extras.org/p/phpmailer/wiki/UsefulTutorial.

 “PHPMailer is a PHP class for PHP (www.php.net) that provides a package of functions to send email. The two primary features are sending HTML Email and emails with attachments. PHPMailer supports nearly all possiblities to send email: mail(), Sendmail, qmail & direct to SMTP server. You can use any feature of SMTP-based email, multiple recepients via to, CC, BCC, etc. In short: PHPMailer is an efficient way to send email within PHP.”

 As you can see from the description, PHPMailer is a complete, feature-laden package for sending emails from PHP scripts. As much as we would like to examine and test all of PHPMailer’s features and capabilities, that would be impractical given the limitations of this book.

 Now we will show you how to use PHPMailer to send a text email and an HTML email to a Gmail address.

 The following steps will guide you in downloading and installing PHPMailer, configuring WAMPSERVER to work with PHPMailer and coding the scripts.

 Step 1: Download PHPMailer/SMTP from https://github.com/PHPMailer/PHPMailer. The following screens show the GitHub page for PHPMailer and where the Download button can be located. You will obtain a zip file named PHPMailer-master.zip of approximately 200kb in size.

 [image:]

 Figure 8.2: The upper left portion of the GitHub PHPMailer download page at https://github.com/PHPMailer/PHPMailer.

 [image:]

 Figure 8.3: The download button on the lower right portion of the GitHub PHPMailer download page at https://github.com/PHPMailer/PHPMailer.

 Step 2: Unzip PHPMailer-master.zip into a folder.

 Step 3: In the folder where you unzipped PHPMailer-master.zip, locate the following three scripts and copy them to your c:/wamp/www folder in Windows (or the corresponding folders on Mac and Linux systems).

 1. PHPMailerAutoload.php

 2. class.phpmailer.php

 3. class.smtp.php

 Step 4: In the WAMPSERVER Menu, enable the Apache ssl_module by accessing the httpd.conf file as shown in the following screenshots.

 [image:]

 Figure 8.4: Accessing the httpd.conf file in the WAMPSERVER menu.

 Step 5: In the httpd.conf file uncomment the following line. (To uncomment remove the “#” sign at the beginning of the line.)

 #LoadModule ssl_module modules/mod_ssl.so

 The uncommented line is shown in the screenshot below.

 [image:]

 Figure 8.5: Uncommenting to enable the ssl_module

 Alternatively, you can also enable the ssl_module through the WAMPSERVER menu choices Apache -> Apache Modules -> ssl_module as shown in the following screenshot.

 [image:]

 Figure 8.6: Enabling the Apache ssl_module in the WAMPSERVER menu.

 Step 6: In the WAMPSERVER menu, enable the php_openssl, php_smtp and php_sockets extensions for PHP as shown in the following screenshot.

 [image:]

 Figure 8.7: In the WAMPSERVER menu, enabling the php_openssl, php_smtp and php_sockets extensions for PHP.

 Step 7: Restart WAMPSERVER for your changes to take effect.

 [image:]

 Figure 8.8: Restarting WAMPSERVER

 You can test that PHPMailer was installed correctly by executing this code which should simply produce an empty browser page.

 <?php

 require("class.phpmailer.php");

 $mail = new PHPMailer();

 ?>

 Step 8: Copy and paste the following lines of code into Komodo Edit and save it as sendEMailText.php.

 [bookmark: _Toc387669731][bookmark: _Toc387670089][bookmark: _Toc387671776][bookmark: _Toc387672118]Code Listing: sendEmailText.php

 <?php

 require('class.phpmailer.php');

 $mail = new PHPMailer();

 $mail->IsSMTP();

 $mail->Mailer = 'smtp';

 $mail->SMTPAuth = true;

 $mail->Host = 'smtp.gmail.com';

 $mail->Port = 465;

 $mail->SMTPSecure = 'ssl';

 $mail->Username = "username@gmail.com";

 $mail->Password = "password";

 $mail->IsHTML(false);

 $mail->SingleTo = false;

 $mail->From = "email address of sender";

 $mail->FromName = "username of sender";

 $mail->addAddress("added email address","added username");

 $mail->Subject = "Testing PHPMailer with localhost";

 $mail->Body = "Hi,

This system is working perfectly.";

 If (!$mail->Send())

 echo "Message was not sent
PHPMailer Error: " . $mail->ErrorInfo;

 else

 echo "Message has been sent";

 ?>

 Step 9: Adjust the Username and Password values in the following lines.

 $mail->Username = "username@gmail.com";

 $mail->Password = "password";

 For Username, enter your Gmail address and for Password, enter your Gmail password.

 Step 10: In the following lines, adjust the From and FromName strings to suitable values for you, as well as in the addAddress function.

 $mail->From = "email address of sender";

 $mail->FromName = "username of sender";

 $mail->addAddress("added email address","added username");

 Step 11: Run the script. In the browser, you should see:

 Message has been sent.

 You can now access your Gmail account to check for new mail.

 [bookmark: _Toc387669732][bookmark: _Toc387670090][bookmark: _Toc387671777][bookmark: _Toc387672119]8.2 Sending HTML Email

 HTML emails contains a very small subset of HTML tags but there is no standard as to what HTML tags comprise this subset. Thus, different email clients vary in what HTML tags they can process in emails. Some email clients don’t process HTML emails at all.

 When HTML email appeared intially, there was some varied opposition to it for many reasons. One reason was security as it would be possible to incorporate malicious code into HTML emails. But then email attachments could also be for the same malicious deeds. Still, the use of HTML email has proliferated and email attachments are still being sent and so opposition to HTML email has become silent resignation.

 HTML email format and structure is similar to standard text email except for additional header attributes. To code our script to send an HTML email, we will simply modify our script to send plain text email by adding a few lines to create the two headers required to send HTML email. These two headers are:

 $headers = “MIME-Version : 1.0\r\n”; this heading is used when sending an email that contains one of the following:

 1. text character sets other than ASCII,

 2. non-text attachments (pictures, music files, video files, etc),

 3. message bodies with multiple parts, or

 4. header information in non-ASCII character sets

 $headers = “Content-Type text/html; charset=ISO-8859-1\r\n” this header defines which character encoding your HTML email will use. This is because a program must first choose a character encoding in order to validate or display an HTML document. For documents in English and most other Western European languages, the widely supported ISO-8859-1 encoding is typically used.

 These two new headers will be new additions in your PHP scripts and the HTML tags embedded in the message section of your email.

 Now, here is the good news! With phpMailer, you don’t have to bother with the additional headers that were just explained!

 Step 1: Retrieve sendEmailText.php and save it as sendEmailHtml.php.

 Step 2: Set the IsHTML function’s parameter to TRUE or add the following line:

 $mail->IsHTML(true);

 Step 3: Set Body and AltBody to the following string values.

 $mail->Body = "Hello, my friend! \n\n This message uses HTML entities!";

 $mail->AltBody="Hello, my friend! \n\n This message uses HTML entities, but you prefer plain text !";

 This is how the complete code listing should look:

 [bookmark: _Toc387669733][bookmark: _Toc387670091][bookmark: _Toc387671778][bookmark: _Toc387672120]Code Listing: sendEmailHtml.php

 <!DOCTYPE html>

 <html>

 <head>

 <title>HTML E-mail</title>

 </head>

 <body>

 <?php

 require('class.phpmailer.php');

 $mail = new PHPMailer();

 $mail->IsSMTP();

 $mail->Mailer = 'smtp';

 $mail->SMTPAuth = true;

 $mail->Host = 'smtp.gmail.com';

 $mail->Port = 465;

 $mail->SMTPSecure = 'ssl';

 $mail->Username = "username@gmail.com";

 $mail->Password = "password";

 $mail->IsHTML(true);

 $mail->SingleTo = false;

 $mail->From = "email address of sender";

 $mail->FromName = "username of sender";

 $mail->addAddress("added email address","added username");

 $mail->Subject = "An HTML Message";

 $mail->Body = "Hello, my friend! \n\n This message uses HTML entities!";

 $mail->AltBody="Hello, my friend! \n\n This message uses HTML entities, but you prefer plain text !";

 if(!$mail->Send())

 echo "Message was not sent
PHPMailer Error: " . $mail->ErrorInfo;

 else

 echo "Message has been sent";

 ?>

 </body>

 </html>

 [bookmark: _Toc387669734][bookmark: _Toc387670092][bookmark: _Toc387671779][bookmark: _Toc387672121]Chapter Quiz

 1. Which corresponds to the recipient of the email in PHP?

 a. $to

 b. $from

 c. $header

 d. $message

 2. What does the mail() function do?

 a. It sends and receives email using PHP through the server.

 b. It reads mail and notifies the user of their email.

 c. It sends a PDF file of a letter to a desired recipient.

 d. It sends a copy of an email to all addresses in a user’s address book.

 3. What does SMTP mean?

 a. Simple Mail Transfer Protocol.

 b. Simple Mommy Tailoring Protocol.

 c. Super Mail Transfer Protocol.

 d. Single Mail Transmit Parity.

 4. What is an HTML email?

 a. A type of email that has HTML tags embedded in it.

 b. A type of email that is created using HTML.

 c. An email that is sent through HTML pages.

 d. A purely Javascript-generated email embedded in an HTML document.

 5. What does the header MIME Version do?

 a. This heading indicates that the email contains characters other than ASCII text characters.

 b. Describes content type in general, including for the web and as storage for rich content in some commercial products.

 c. Mimes the email for the server.

 d. Copies the content of the email and saving it on the server.

 6. What is the use of the content type text/HTML header?

 a. It declares that the email will contain both HTML and plain text in the message body.

 b. It allows the use of PHP scripts in the email.

 c. It allows the usage of Javascript in the email.

 d. It defines the character encoding the HTML email will use.

 [bookmark: _Toc387669735][bookmark: _Toc387670093][bookmark: _Toc387671780][bookmark: _Toc387672122]Chapter Lab Exercise

 Problem: Create an HTML email using PHP that will send the following HTML email. Use and assign the following values to its appropriate variable argument.

 <!DOCTYPE html>

 <html>

 <body>

 <h1>This is Chapter 8 Lab Exercise HTML test e-mail</h1>

 <p>Such an easy Lab Exercise! </p>

 </body>

 </html>

 Solution:

 [bookmark: _Toc387669736][bookmark: _Toc387670094][bookmark: _Toc387671781][bookmark: _Toc387672123]Code Listing: Chapter 8 Lab Exercise Solution.

 [bookmark: _Toc387669737][bookmark: _Toc387670095][bookmark: _Toc387671782][bookmark: _Toc387672124]chap8Lab.php

 <?php

 require('class.phpmailer.php');

 $mail = new PHPMailer();

 $mail->IsSMTP();

 $mail->Mailer = 'smtp';

 $mail->SMTPAuth = true;

 $mail->Host = 'smtp.gmail.com';

 $mail->Port = 465;

 $mail->SMTPSecure = 'ssl';

 $mail->Username = "username@gmail.com";

 $mail->Password = "password";

 $mail->IsHTML(true);

 $mail->SingleTo = false;

 $mail->From = "email address of sender";

 $mail->FromName = "username of sender";

 $mail->addAddress("added email address","added username");

 $mail->Subject = "Chapter 8 Lab EXercise";

 $message = "<html><body>";

 $message .= "<h1>This is Chapter 8 Lab Exercise HTML test e-mail</h1>";

 $message .= "<p>Such an easy Lab Exercise! </p>";

 $message .= "</body></html>";

 $mail->Body = $message;

 $mail->AltBody= $message;

 if(!$mail->Send())

 echo "Message was not sent
PHPMailer Error: " . $mail->ErrorInfo;

 else

 echo "Message has been sent";

 ?>

 </body>

 </html>

 [bookmark: _Toc387669738][bookmark: _Toc387670096][bookmark: _Toc387671783][bookmark: _Toc387672125]Chapter Summary:

 In this chapter you learned the difference between plain text email and HTML email.

 You learned how to write basic PHP scripts that would send those two types of emails.

 To be able to test those scripts, you learned how to download and install a powerful and popular PHP email package called phpMailer.

 You also learned how to configure WAMPSERVER to work with phpMailer by adjusting a few of the numerous WAMPSERVER parameters.

 With phpMailer installed and WAMPSERVER configured, you used PHP to send email to a Gmail account.

 In the next chapter, we will discuss how to use PHP scripts to access MySQL Databases. MySQL is the most widely used open source relational database management system.

 [bookmark: _Toc387669739][bookmark: _Toc387670097][bookmark: _Toc387671784][bookmark: _Toc387672126]Chapter 9: Working with the MySQL Database

 [bookmark: _Toc387669740][bookmark: _Toc387670098]Chapter Objectives:

 	You will learn how to create a MySQL database using the phpMyAdmin web application.

 	Using phpMyAdmin, you will learn how to create tables in a MySQL database and input data into those tables.

 	You will learn to write PHP scripts to develop a simple and basic CRUD (Create, Retrieve, Update and Delete) application.

 	You will learn how to use a combination of HTML forms and PHP scripts to input and update data in a MySQL database.

 	You will learn how to construct SQL Insert, Retrieve, Update and Delete Query Statements and how to use PHP scripts to execute those statements on a MySQL database.

 	You will learn how to use an application programming interface called MySQLi that will allow your PHP script to access a MySQL database.

 Databases are the backbone of computers. The primary task of computer systems is to preserve and manage data, specifically to store data, organize it, update it, protect it, preserve its integrity and retrieve it in many more ways than one. Computer systems store data in databases.

 There are many classifications of databases: hierarchical, flat-file, network, distributed, and so on. Their differences are based on how they work and what they are used for. In business applications, the most commonly used type is the relational database. It is called this because the tables of a relational database store not only data, but the relationships among the data.

 TIP: You will encounter the term database management system, or dbms which includes the software tools and utilities that are provided to manage the data in the database. Nowadays, both terms are used interchageably.

 First, let’s lay the groundwork with a crash course on some basic database terms and simplified concepts.

 Databases – A database is an organized collection of related data. It is primarily made up of tables. It is in these tables that data is stored.

 Table – A collection of closely related data or columns (or fields). For example, an accounting database would have a table of Customers (for monitoring receivables) and another table of Suppliers (for monitoring payables) as well as a table of Employees (for monitoring payroll and benefits).

 Column – A table consists of columns or fields which are types of data you are storing in your table. For example, the Employees table would consist of the columns, empID, lastName, firstName, department, position and salary.

 Row – This is a set of related data. For example, in the Employees table, a row would be the data for one employee.

 Fields – This is another term for a column. Sometimes, a field refers to a specific row’s column.

 Record - This is another term for a row.

 Value – A value is the data in a given row and column.

 At this point, to help you visualize and understand the terms table, columns, rows, fields, records, and values we show a schematic representation of two tables – Employee and Department. (We will be creating these tables later in our code examples.)

 	 empId

 	 lastName

 	 firstName

 	 department

 	 position

 	 salary

 	 001

 	 Smith

 	 George

 	 1

 	 S Acct

 	 84000

 	 002

 	 Valera

 	 Linda

 	 2

 	 J Sales

 	 55000

 Table 9.1: The Employee Table

 The Employee table has six columns or fields and two rows of data. (The first row gives the names of the columns as a pictorial aid and is not part of the table.)

 	 departmentId

 	 departmentName

 	 1

 	 Accounting

 	 2

 	 Sales

 	 3

 	 Operations

 	 4

 	 Management

 Table 9.2: The Department Table

 The Department table has two columns or fields and four rows of data.

 Relationship – A relationship is a link between two tables. It is a powerful method for organizing your data. You define the relationship by establishing a link between the fields of two tables (where one or both fields is a primary key field). For example, we can establish a relationship between the two previous tables, Employee and Department, by linking the fields department of Employee and deparmentId of Department. This relationship makes the data of both tables available as one.

 A table can have as many relationships as it has fields with other tables. For example, it is possible but impractical to link each of the six fields of Employee to other tables in the database.

 Join – This is another term for relationship.

 Key – This is a column or columns on which an index is constructed to allow rapid and/or sorted access to a table’s data.

 Index – This is an internal system that a database system uses to locate data more quickly. In a table, you can specify that certain columns, usually keys, are indeces. Like relationships or joins, it is possible but impractical to create an index for every column of a table.

 Primary key– This is a column or group of columns in a given table that uniquely identifies each row of the table. To uniquely identify a row, no two primary keys can have the same value. In our example tables, the field empId is the primary key of the Employee table and the primary key of the Department table is departmentId.

 Foreign key – This is one or more columns in a table intended to contain only values that match the related primary/unique key column(s) in the referenced table. Foreign and primary keys explicitly define the direct relationships between tables. In our example tables, the primary key column departmentId of Department establishes a relationship to the foreign key column department of Employee.

 TIP: For more database-related terms, you can check out Database Terminology – A Dictionary of the Top 145 Database Terms at http://raima.com/database-terminology/.

 In this chapter, we will introduce you to the open source, relational type of database called MySql. (It’s pronounced either My S-Q-L or My Sequel.) It is a popular standard for many shared hosting services and it runs on many platforms – various Unix/Linux versions, Windows, and Mac OS X. It can be used with many programming languages – PHP, Java, C#, ASP, Visual Basic, and more.

 Access to the data stored in a MySQL database is done through SQL (Structured Query Language) which was developed in the 1970s and is now the standard used in all databases, although slight differences exist in various implementations.

 Access to MySQL can also be achieved through PHP with the use of APIs (Application Programming Interfaces) or extensions.

 [bookmark: _Toc387669741][bookmark: _Toc387670099][bookmark: _Toc387671785][bookmark: _Toc387672127]9.1 Setting up the Database

 In this section, we will create a database. Then we will create two tables in that database (the two tables we illustrated previously – Employee and Department) and then store some sample data in those two tables. To do all of those, we have two tools provided by WAMPSERVER – MySQL Console and PhpAdmin. We will use the latter, but first let’s cover some introductory details about MySQL Console.

 To start MySQL Console from the WAMPSERVER menu, click on MySQL and then click on MySQL console as shown in the following screenshot.

 [image:]

 Figure 9.1: MySQL Console at WAMPServer

 This will open a command line window as shown in the following screenshot.

 [image:]

 Figure 9.2: MySQL command line window.

 If you type ‘HELP’ (without the quotation marks), you will get a display of all the possible commands you can type in the console as shown in the following help screen.

 [image:]

 Figure 9.3: List of MySQL commands than can be used in the command line.

 As you can see, it’s not a user-friendly interface, as it favors the keyboard rather than the mouse and it’s all white text on a black background. So, we can forget about MySQL Console and move on to phpMyAdmin.

 To start phpMyAdmin from the WAMPSERVER menu, click on phpMyAdmin as shown in the following screenshot. Ideally, phpMyAdmin will require a username and a password, but to simplify testing, a default username of root and a blank password is automatically provided.

 [image:]

 Figure 9.4: phpMyAdmin at WAMPServer

 This will bring up the following phpMyAdmin main or opening screen. Take a while to familiarize yourself with the panels and windows. Look at the horizontal menu at the top of the screen which has the choices: Databases, SQL, Status, Users, Export, and More. This last choice, More, will open up another menu of additional options, namely: Settings, Synchronize, Binary Log, Replication, Variables, Charsets, and Engines.

 [image:]

 Figure 9.5: The phpMyAdmin screen

 Now, click on the option Databases in the top horizontal menu. This will bring up the Databases screen as shown in the following screenshot.

 [image:]

 Figure 9.6: The screen for creating the database.

 Look for the Create Database box (just below the large title ‘Databases’) and type ‘Employees’ (without the quotes).

 In the Collation drop-down box, select ‘utf8_general_ci’

 Then, click the Create icon.

 A message will then pop up, saying The database employees has been created. You will see this name of the database on the left panel, as shown here:

 [image:]

 Figure 9.7: The database employees has been created.

 If you click on the employees icon in the left panel of the screen, you will see the following:

 [image:]

 Figure 9.8: Creating new table in the employees database.

 Now, we will create the employee table for the employees database.

 Input ‘Employee’ in the Name box.

 Input ‘6’ in the Number of Fields box.

 Click Go. This will bring you to the following screen:

 [image:]

 Figure 9.9: The screen for creating the fields of the table employee.

 Now, we can create the fields of the employee table, where each field will occupy a single column. You can start inputting data into the various fields using the following table as a guide.

 	 FIELD NAME

 	 TYPE

 	 LENGTH/
VALUE

 	 Notes

 	 empid

 	 Int

 	 11

 	 Primary Key
Auto-Increment

 	 lastname

 	 varchar

 	 40

 	

 	 firstname

 	 varchar

 	 20

 	

 	 department

 	 Int

 	 2

 	

 	 position

 	 varchar

 	 20

 	

 	 salary

 	 Int

 	 10

 	

 Table 9.3: Input data into the various fields for the employee table using this table as a guide.

 Note that for the empid field, you have to specify the Index as primary (select primary from the dropdown box) and check the A_I checkbox (for Auto_Increment).

 After specifying the names, types and length/values of each field, click the icon save, which will complete the process of creating the table employee.

 Now, click the icon named employee, and then click structure, which will bring the following screen.

 [image:]

 Figure 9.10: The employee table.

 Let’s move on to create our second table, department. Click on the Create Table icon on the left pane of the screen. This will bring up the following screen where you can define the fields or columns of the department table.

 [image:]

 Figure 9.11: Specifying the fields in the table department.

 You can start inputting data into the various fields using the following table as a guide.

 	 FIELD NAME

 	 TYPE

 	 LENGTH/
VALUE

 	 Notes

 	 deptId

 	 int

 	 11

 	 Primary Key
Auto-Increment

 	 departName

 	 varchar

 	 40

 	

 You also have to set up the field deptid as a primary key. Specify the Index as primary (select primary from the dropdown box) and check the A_I checkbox (for Auto_Increment).

 Now, as we have set up the database with two tables, we should now add some data in the tables. To add data in the first table, click employee, and then click insert. After that, add some fictional data, as shown here:

 [image:]

 Figure 9.12: Adding data to the table employee.

 Here, you can see that the empid field is left blank, as data in this field will be added automatically. After inserting, click Go. If you check the corresponding SQL code, you will see this:

 INSERT INTO `employees`.`employee` (`empid`, `lastname`, `firstname`, `department`, `position`, `salary`)

 VALUES (NULL, 'Tilly', 'Jennifer', '4', 'Vice President', '124500');

 This is a nice feature of phpmyAdmin. As you perform various database operations, it will display the SQL statements that carry out that operation – a nice way to appreciate and master SQL code.

 You need to add data for 10 employees here. After doing that, you will see something like this (by clicking browse>>profiling):

 [image:]

 Figure 9.13: The table employee with 10 rows.

 Here, you can easily edit and delete a row by clicking the corresponding icons. Now, add some rows in the departments table by following the same procedure:

 [image:]

 Figure 9.14: Adding data to the table departments.

 The departments table will look like this:

 [image:]

 Figure 9.15: The table departments with four rows.

 Now, your database is completely set up! In the next chapter, we will make a PHP application that will interact with this database.

 [bookmark: _Toc387669742][bookmark: _Toc387670100][bookmark: _Toc387671786][bookmark: _Toc387672128]Questions for Review

 1. What should we type in order to get a list of commands in the MySQL command prompt?

 a. mysql>Help

 b. mysql>command

 c. mysql>list

 d. None of the above.

 2. In order to make sure that each entry in a column will be unique, what do we use?

 a. Foreign key.

 b. Candidate key.

 c. Primary key.

 d. None of the above.

 [bookmark: _Toc387669743][bookmark: _Toc387670101][bookmark: _Toc387671787][bookmark: _Toc387672129]9.2 Retrieving a Query from the Database

 In the previous section, using phpMyAdmin, we created the database employees and then, within that database, we created the tables employee and department. Still using phpMyAdmin, we inputted sample data into those two tables. Now, we are going to retrieve those data by writing PHP scripts that perform database operations on a MySQL database.

 To enable PHP to access and manipulate the rows and columns of tables in a MySQL database, we use a MySQL API Extension. PHP provides three such extensions:

 - The deprecated, orginal MySQL API

 - The MySQL PDO functions

 - The MySQL Improved extension, MySQLi.

 We will be using the third API extension, MySQLi, which is also the latest. API means application programming interface. This interface defines the classes, methods, functions, and variables that your PHP script will need in order to interface with MySQL.

 TIP: To learn everything about the three PHP MySQL API Extensions, you can look up the document PHP MYSQL API (2014-03-14 Revision 38079). This manual describes the PHP extensions and interfaces that can be used with MySQL. One site that hosts this document is downloads.mysql.com/docs/apis-php-en.a4.pdf‎. You can search for other sites by typing “php mysqli api” in your search engine.

 Before we go into detail about MySQLi, let’s first clarify what we mean by “to access and manipulate the rows and columns of tables in a MySQL database.” We are going to write a very simple and basic PHP CRUD application. CRUD is an acronym for Create, Retrieve, Update and Delete. A CRUD application:

 a. Adds new rows to the tables of a database (Create),

 b. Retrieves data from the tables of a database,

 c. Modifies the data in a table’s columns (Update), and

 d. Deletes rows from the tables of a database.

 Each of those four previous functionalities is specifically carried out by a specific SQL statement:

 	 INSERT

 	 Adds new rows of data to a table in a database.

 	 SELECT

 	 Retrieves data from one or several tables.

 	 UPDATE

 	 Modifies existing data.

 	 DELETE

 	 Removes a row of data from a table.

 Our PHP scripts will construct the exact SQL statement needed and then use MySQLi to have the MySQL database execute the SQL statement.

 MySQLi provides an object-oriented interface and a procedural interface. We will be using the former.

 You don’t have to fully understand OOP (object-oriented programming) concepts to understand and appreciate MySQLi’s object-oriented interface. Except for some unfamiliar keywords and notations (like “new” and “->”), using an object-oriented interface is similar to calling functions and manipulating variables.

 OOP, as the name implies, deals with objects. Objects are just program code and program data bundled up as one isolated package with clear boundaries and definite rules on how to access that object’s program code and data.

 For our CRUD application we will be using two objects: a connection object and a resultset object.

 A class contains the blueprint for an object. A class specifies in detail what an object’s program code and data are. We create objects from classes or in OOP-speak, we instantiate an object from its class. For example, the following line of code creates or instantiates a connection object from the mysqli class. (Note the use of the keyword new.) The connection object is stored or, more exactly, is referenced by the variable $conn.

 $conn = new mysqli(HOSTNAME, USERNAME, PASSWORD, DB_NAME);

 An object’s code can be accessed by calling its methods. Methods are just like functions but methods can only operate on an object’s data. Like functions, an object’s methods can receive arguments and return a value. Let’s look at this line of code.

 $rs = $conn->query($sql);

 Here, we are calling the query method of the connection object. (Note the “->” notation when referencing an object’s methods.) We are providing one argument to the query method, the variable $sql which contains an SQL statement. The query method returns an object, a resultset object. (The query method instantiates a resultset object and returns a reference to that object.) The variable $rs references the resultset object.

 An object’s data can be accessed by retrieving its properties. Properties are just like variables. However, some properties are read-only, you can only access their values, not change them. Other properties are read-write. In our CRUD application, all the properties we will be handling are read-write. Let’s look at this line of code:

 $rows_returned = $rs->num_rows;

 Here, we are accessing the read-only property, num_rows, of the resultset object, $rs, and storing its value in the variable $rows_returned. (Again, please note the use of the “->” notation when referencing an object’s properties as well as methods.)

 That’s it. That’s all you need to understand and appreciate the object-oriented interface of MySQLi.

 Now, let’s establish the general flow of logic of each of our four main scripts.

 a. We establish a link to the MySQL database by creating a connection object, $conn, from the mysqli class.

 b. We check if the connection object was successfully created and the link established. If not, we display an error message and exit the program.

 c. If the connection object was successfully created, we construct an SQL query (either INSERT, SELECT, UPDATE or DELETE).

 d. We use the query method of the connection object, $conn, to execute the query we constructed to obtain a resultset object, $rs.

 e. We check if the query was successful. If it was successful, we display certain parameters regarding the execution of the query. If not, we display an error message and exit the program.

 f. In the case of the Retrieve functionality, if the query was successful, we obtain a resultset object. We then use the fetch_array method of the resultset to transfer the data of the resultset object to either an associative or indexed array.

 g. When all database operations are completed (added, retrieved, updated and deleted), close the connection by calling the close method of the connection object, $conn.

 Let’s start with a simple script, connect.php, which will create a connection object to our database employees. (This is step a and b from the previous paragraphs.) Type the following code and save it as connect.php.

 <?php

 define("HOSTNAME", "localhost");

 define("USERNAME", "root");

 define("PASSWORD", "");

 define("DB_NAME", "employees");

 $conn = new mysqli(HOSTNAME, USERNAME, PASSWORD, DB_NAME);

 if ($conn->connect_errno) {

 echo("
Failed to connect to MySQL: (" .

 $conn->connect_errno . ") " . $conn->connect_error);

 } else {

 echo("
Connected to database " . DB_NAME);

 echo("
" . $conn->host_info);

 }

 ?>

 Let’s analyze the code. First, we define four constants – HOSTNAME, USERNAME, PASSWORD, and DB_NAME. These four constants will be provided as arguments to the class mysqli() which creates a connection object, referenced by the variable $conn. The methods of this connection object will allow us to access the database employees.

 Note that to simplify procedures we have used “root” as our username and an empty string as our password, but in reality we should provide a real username and a strong password. These actual usernames and passwords should have been defined and set beforehand in our database employees.

 Also remember that the use of constants should become one of your programming best practices. You should have a location in your code where you can place parameters that could vary frequently, such as usernames and passwords.

 Now, if we run this script on a PC running Windows 7, we will see this:

 Connected to database employees
localhost via TCP/IP

 The second or last line will vary depending on your operating system. Some systems will generate:

 127.0.0.1 via TCP/IP

 Now, let’s test our code by changing the line:

 define("DB_NAME", "employees");

 to:

 define("DB_NAME", "competitors");

 In effect, we are deliberately creating an error condition by providing the name of a non-existent database. If we run this modified connect.php, we should get the following screenshot.

 [image:]

 Figure 9.16: An error message display.

 The last line of the display is generated by our line of code which reads:

 echo("
Failed to connect to MySQL: (" . $conn->connect_errno . ") " . $conn->connect_error);

 The rest of the display is generated by the browser Google Chrome.

 As you can see, our connect.php script is fully debugged and running nicely. Now, we will make some slight changes and save the modified script as connectInc.php. This is its code:

 <?php

 define("HOSTNAME", "localhost");

 define("USERNAME", "root");

 define("PASSWORD", "");

 define("DB_NAME", "employees");

 $conn = new mysqli(HOSTNAME, USERNAME, PASSWORD, DB_NAME);

 if ($conn->connect_errno) {

 echo("
Failed to connect to MySQL: (" . $conn-

 >connect_errno . ") " . $conn->connect_error);

 die('
Program Terminated');

 }

 ?>

 We made these changes because connectInc.php is a script which we will include into our next scripts with the require_once() function, as shown in the following snippet of code.

 <?php

 require_once("connectInc.php");

 ?>

 Now, we are going to build a script which will construct a SQL Select statement to retrieve records from the table employee. Let’s input the following code and save it in the file Retrieve1.php:

 <?php

 require_once("connectInc.php");

 $sql = "SELECT * FROM employee";

 $rs = $conn->query($sql);

 if ($rs === false) {

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 } else {

 $arr = $rs->fetch_array(MYSQLI_ASSOC); // MYSQLI_NUM

 $rows_returned = $rs->num_rows;

 echo("
Rows: " . $rows_returned);

 echo("
" . $arr[‘empid’] . ‘ ‘ .

 $arr[‘lastname’] . ‘ ‘ .

 $arr[‘firstname’] . ‘ ‘ .

 $arr[‘department’] . ‘ ‘ .

 $arr[‘position’] . ‘ ‘ .

 $arr[‘salary’]);

 }

 ?>

 Let’s analyze this code. Since we already know what the function require_once() does and we know the contents of connectInc.php, let’s start with the line:

 $sql = "SELECT * FROM employee";

 Here we construct a SQL query statement (adhering to the SQL syntax and grammar rules) and store that query statement, which is an instruction to obtain all records in the table employee, in the variable $sql. Then, in the next line, we provide $sql as an argument of the query method of the connection object $conn.

 $rs = $conn->query($sql);

 The query method of the connection object, $conn, will execute the SQL statement in $sql and will obtain all the records in table employee and store those records as a resultset object referenced by the variable $rs.

 A resultset (also known as recordset) is a memory image in the client’s browser of the rows of a table of a database in the server. A resultset is the result of executing a query. In our previous query, we requested all the rows of the table employee. We could also have requested only those employees in a certain department. Whatever our query, the rows that match our query now exist as a resultset referenced by the variable $rs. We can perform operations on the resultset as if we were performing them on the actual table. The database engine will take care of updating the table as we update the resultset.

 (Of course, if a table contained thousands of rows and we requested all those rows, the client’s machine may not have enough memory to hold all those rows. So the server will have to use pagination techniques to serve up rows that can be handled by the memory capacity of the browser client.)

 Now, back to the query method of the connection object referenced by $conn which executed the SQL statement in $sql and returned a resultset object referenced by the variable $rs.

 If the query fails to execute, the variable $rs will contain the boolean value false and this line of code will display a specific error message.

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 To execute this trigger_error() function, change this line of code:

 $sql = "SELECT * FROM employee";

 to:

 $sql = "OBTAIN * FROM employee";

 You will get this error message specifically pointing out that “OBTAIN” was the error in our SQL statement:

 Fatal error: Wrong SQL: OBTAIN * FROM employee Error: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'OBTAIN * FROM employee' at line . . .

 If our query was successful, then all the records of the table employee are in the resultset object referenced by the variable $rs. We then execute the fetch_array method of the resultset object, $rs:

 $arr = $rs->fetch_array(MYSQLI_ASSOC);

 The fetch_array method will store the fields of the current row of the resultset $rs in an associative array $arr using the field names as keys because we provided the constant MYSQLI_ASSOC. If we change this constant to MYSQLI_NUM, then $arr will be a numerically indexed array.

 We said “store the fields of the current row of $rs.” What will be the “current row of $rs”? Since we will be accessing $rs immediately after $rs was created (by the query method of the connection object $conn) in the line of code,

 $rs = $conn->query($sql);

 then the current row of $rs will be its first row. The fields of this first row will be stored in the associative array $arr. We now display those fields with the line:

 echo($arr[‘empid’] . ‘ ‘ .

 $arr[‘lastname’] . ‘ ‘ .

 $arr[‘firstname’] , ‘ ‘ .

 $arr[‘department’] , ‘ ‘ .

 $arr[‘position’] , ‘ ‘ .

 $arr[‘salary’]);

 In your browser, you should see something similar to this:

 101 Escudero, Ernesto 3 Utility Supervisor 10000

 These are the fields of the first row of the table employee. Check that the values you get match the actual values of the fields of your first record in the correct order – empid, lastname, firstname, department, position and salary.

 We also have these two lines of code:

 $rows_returned = $rs->num_rows;

 echo("
Rows: " . $rows_returned);

 which will produce the following output:

 Rows: 9

 num_rows is a property of the resultset object referenced by $rs, which stores the number of rows in $rs, which is also the number of rows in the table employee. Check that the value displayed in your browser matches the number of records in your employee table. You can use phpMyAdmin to accomplish this.

 Now, we have two scripts that are running properly. One script, connectInc.php, establishes a connection to the MySQL database employees. The second script retrieve1.php executes a Select query on the database and retrieves all the records of the table employee into the resultset object $rs. But, it only displays the first record! How do we display all the rows of the resultset $rs? (In effect, how do we display all the rows of the table employee?). The answer: we use a while-loop.

 When we call the fetch_array method for the first time, it will extract the fields of the first row of $rs (the current row) into the elements of array $arr. Fetch_array then makes the second row the current row.

 If we call fetch_array again, it is the fields of this second row which will be extracted and then the third row becomes the current row. So if we keep calling fetch_array repeatedly, we are able to consecutively process all the rows of the resultset $rs.

 So, to make repeated calls to fetch_array within a while-loop, we modify the code of retrieve1.php and save it as retrieve2.php. This is its code:

 <?php

 require_once("connectInc.php");

 $sql = "SELECT * FROM employee";

 $rs = $conn->query($sql);

 if ($rs === false) {

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 } else {

 $rows_returned = $rs->num_rows;

 echo("
Rows: " . $rows_returned);

 while ($arr = $rs->fetch_array(MYSQLI_ASSOC)) {

 echo("
");

 echo ($arr['empid'] . ‘ ’ .

 $arr['lastname'].‘ ’.

 $arr['firstname'] . ‘ ’ .

 $arr['department'] . ‘ ’ .

 $arr['position'].' '.

 $arr['salary']);

 }

 }

 ?>

 When we execute this script, we will see all the rows of the employee table displayed in the following manner.

 [image:]

 Figure 9.17: All the rows of the employee table are displayed.

 To present this information in a table, replace the else block with the following code, and save the script as retrieve3.php:

 {

 $rows_returned = $rs->num_rows;

 echo("
Rows: " . $rows_returned);

 echo("<table>");

 while ($arr = $rs->fetch_array(MYSQLI_ASSOC)) {

 echo("<tr>");

 echo "<td>" . $arr['empid'] . "</td>"

 ."<td>" . $arr['lastname'] . "</td>"

 ."<td>" . $arr['firstname'] . "</td>"

 ."<td>" . $arr['department'] . "</td>"

 . "<td>" . $arr['position']. "</td>"

 . "<td>" . $arr['salary'] . "</td>";

 echo '</tr>';

 }

 echo("</table>");

 }

 When we execute retrieve3.php, we will get a display similar to the following, where the columns are neatly aligned.

 [image:]

 Figure 9.18: The information is represented in a table form.

 In this chapter, we are able to query the database using a SQL command, get a $result object by sending the query to the database itself, and then loop through the rows of the $result object and create a table out of that data.

 This is the entire code listing of retrieve3.php.

 <?php

 require_once("connectInc.php");

 $sql = "SELECT * FROM employee";

 $rs = $conn->query($sql);

 if ($rs === false) {

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 } else {

 echo("<table>");

 while($arr = mysqli_fetch_array($rs, MYSQLI_ASSOC)) {

 echo("<tr>");

 echo "<td>" . $arr['empid'] . "</td>"

 ."<td>" . $arr['lastname'] . "</td>"

 ."<td>" . $arr['firstname'] . "</td>"

 ."<td>" . $arr['department'] . "</td>"

 . "<td>" . $arr['position']. "</td>"

 . "<td>" . $arr['salary'] . "</td>";

 echo '</tr>';

 }

 echo("</table>");

 }

 ?>

 [bookmark: _Toc387669744][bookmark: _Toc387670102][bookmark: _Toc387671788][bookmark: _Toc387672130]Questions for Review

 1. Which class serves as a blueprint to a connection object which enables PHP scripts to access a MySQL database?

 a. connection class

 b. mysqli class

 c. physics class

 d. recordset class.

 2. Which command indicates that if mysql_connect does not work, it will go ahead and provide a MySQL error that occurred?

 a. or end

 b. or die

 c. or finish

 d. or error

 [bookmark: _Toc387669745][bookmark: _Toc387670103][bookmark: _Toc387671789][bookmark: _Toc387672131]9.3 Storing Information in the Database

 Let’s review our past efforts. We used phpMyAdmin to create our database, employees, and its two tables – employee and department. We also used phpMyAdmin to input test data into our two tables. Then, we wrote several PHP scripts to carry out the Retrieve functionality of our CRUD application. Now, we are going to code PHP scripts to handle the Create functionality.

 The first thing we need to do is create a form where the user will type the information that will directly go into the database. Here, we are not going to include empid, as it will be generated automatically. We will open a new file called insert.php, where we will use the HTML form tag, and write the following code there:

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <meta charset=”UTF-8”>

 <title>Insert Employee</title>

 </head>

 <body>

 <form action="insertProcess.php" method="post">

 <p>Last Name

 <input type="text" name="last"/></p>

 <p>First Name

 <input type="text" name="first"/></p>

 <p>Department

 <input type="text" name="department"/></p>

 <p>Position

 <input type="text" name="position"/></p>

 <p>Salary

 <input type="text" name="salary"/></p>

 <input type="submit" value="Save Information" />

 </form>

 </body>

 </html>

 Let’s take a look at this line of HTML code:

 <form action="insertProcess.php" method="post">

 This form tag sets the action attribute to the file insertProcess.php which will receive and process the data input into this form. We also use the post method, which passes the information as an array instead of creating a query string which appears in the URL.

 If we run the script insert.php in our browser, we will see this:

 [image:]

 Figure 9.19: The form through which new data will be inserted.

 Now we have a form that can be used to put data into the database. However, you can see that you can type anything in the box under Department, which is not what we want.

 We want the user to select the department name, but it is not the department name that will be saved in the database, but the corresponding Department ID which can only have a value between 1 and 4. To do this, we modify our HTML code in this way.

 <p>Department

 <select name="department">

 <option value="1">Accounting</option>

 <option value="2">Sales</option>

 <option value="3">Information Technology</option>

 <option value="4">Management</option>

 </select>

 </p>

 Here, it is the value attribute of the option tag that is going to be posted when its corresponding literal—either Accounting, Sales, Information Technology, or Management—is selected by the user.

 [image:]

 Figure 9.20: The dropdown box for the Department field.

 Now, before actually inserting data into this form, let’s code the script insertProcess.php. The first task of this script is to extract the data input in the form displayed by insert.php. We thus access the superglobal array $_REQUEST with the following lines of code and then display it with an echo function:

 <?php

 $last = $_REQUEST['last'];

 $first= $_REQUEST['first'];

 $department= $_REQUEST['department'];

 $position= $_REQUEST['position'];

 $salary= $_REQUEST['salary'];

 echo($last . ' ' .

 $first . ' ' .

 $department . ' ' .

 $position . ' ' .

 $salary);

 ?>

 Now, let’s test if the data input in insert.php was actually passed to insertProcess.php. Run the script insert.php and input the data as shown in this screenshot.

 [image:]

 Figure 9.21: Passing information to the database.

 When we click the Save Information button, you should see this on the screen:

 Smith Fred 3 Programmer 65000

 First, you may see some slight discrepancies with the code for Information Technology. We show a ‘3’, but you might get a ‘2’ or ‘4’. No matter, the data displayed should be in the order lastname, firstname, departmentID, position, and salary. If the data you input in the form of insert.php is displayed correctly in this order, then the inputted data was passed correctly to this script insertProcess.php.

 Now, before we complete the rest of the code of insertProcess.php that will store this data in the table employee, please go back to somewhere near the beginning of Section 9.2 (Retrieving a Query from the Database) where we outline “the general flow of logic of each of our four main scripts.” Here is a brief summary of that flow of logic.

 a. Establish a link to the database with a connection object $conn.

 b. Check if $conn was successfully created.

 c. Construct either an INSERT, SELECT, UPDATE or DELETE query.

 d. Use the query method of $conn to execute the query.

 e. Check if the query executed successfully. In the case of the Retrieve functionality, obtain a resultset object and transfer its contents to an array.

 f. Close the connection.

 Now we complete the code of the script insertProcess.php. First, we extract the data posted by insert.php from the super global array $_REQUEST and store it in the variables $last, $first, $department, $position and $salary.

 $last = $_REQUEST['last'];

 $first= $_REQUEST['first'];

 $department= $_REQUEST['department'];

 $position= $_REQUEST['position'];

 $salary= $_REQUEST['salary'];

 The data that we will store in the table employee is now in the five variables - $last, $first, $department, $position, $salary. As an aid to debugging, we display in the browser the values of those five variables with the line:

 echo($last . ' ' .

 $first . ' ' .

 $department . ' ' .

 $position . ' ' .

 $salary);

 Later on, in the production version of our application, we can remove this line.

 Next, we establish a connection with our database and check if this connection was successful. This is steps a and b of our “general flow of logic.” This is carried out by the code in the script connectInc.php which we include into our insertProcess.php script:

 require_once("connectInc.php");

 Next, (step c) we build our SQL Insert statement and store this statement in the variable $sql.

 $sql= "INSERT INTO employee VALUES (''," .

 "'" . $last . "'," .

 "'" . $first . "'," .

 "'" . $department . "'," .

 "'" . $position . "'," .

 "'" . $salary . "')";

 Next, (step d) we call the query method of the connection object $conn. We provide $sql as an argument to the query method. We make this call in the if clause of an if-else statement as in the following code:

 if ($conn->query($sql) == false) {

 $errmsg = 'Wrong SQL: ' . $sql . ' Error: ' . $conn->error;

 trigger_error($errmsg, E_USER_ERROR);

 } else {

 . . .

 }

 Now, (step e) we check if the query method was successful. The call to the query method will return the boolean value FALSE if the query method failed to carry out the INSERT statement stored in $sql. The trigger_error() function will then be executed and the script terminated.

 If the query method succeeded in writing our data to the table employee as a new row, then we can access two properties of the connection object, $conn, and display those two properties for debugging purposes.

 $last_inserted_id = $conn->insert_id;

 $affected_rows = $conn->affected_rows;

 echo("
Last Inserted Id: " . $last_inserted_id);

 echo("
Affected rows: " . $affected_rows);

 Notice also that in the preceeding code we have added a link that the user can click if he needs to enter more new employees.

 Next, we need to close the SQL connection (step f) with a call to the close method of the connection object, $conn:

 $conn->close;

 Now, let’s test our two scripts by executing insert.php and then inputting the data shown on the following screen.

 [image:]

 Figure 9.22: New row is being inserted in the table employee.

 If we click Save Information, we will see this:

 Johnson Karl 1 Accounts Director 59000

 INSERT INTO employee VALUES ('','Johnson','Karl','1','Accounts Director,'59000')

 Last Inserted Id: 114

 Affected rows: 1

 Johnson successfully added to the database.

 We can use phpMyAdmin to check if our data was actually added

 If we check the actual database in our phpMyAdmin application, we will find that a new row is successfully added at the bottom, as shown here:

 [image:]

 Figure 9.23: A new row is added in the table employee.

 This shows that our attempt to add new information into the database was successful.

 In the sections that follow, we are going to call the script insert.php from a dashboard script that we will name index.php. A dashboard script is a central or main script that provides links to other scripts of the system. In our CRUD application, the dashboard script index.php will have links to the Create, Update and Delete functionalities of our application.

 Now, once our dashboard script index.php calls the Create script insert.php, which in turn executes insertProcess.php, we should be able to return to the dashboard from insertProcess.php. Therefore, in insertProcess.php our last line of code will be:

 echo("
Go back to Add-Upd-Del Page");

 Here then is the entire code listing for insertProcess.php:

 <?php

 $last = $_REQUEST['last'];

 $first= $_REQUEST['first'];

 $department= $_REQUEST['department'];

 $position= $_REQUEST['position'];

 $salary= $_REQUEST['salary'];

 echo($last . ' ' .

 $first . ' ' .

 $department . ' ' .

 $position . ' ' .

 $salary);

 require_once("ConnectInc.php");

 $sql= "INSERT INTO employee VALUES (''," .

 "'" . $last . "'," .

 "'" . $first . "'," .

 "'" . $department . "'," .

 "'" . $position . "'," .

 "'" . $salary . "')";

 if ($conn->query($sql) == false) {

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 } else {

 $last_inserted_id = $conn->insert_id;

 $affected_rows = $conn->affected_rows;

 echo("
Last Inserted Id: " . $last_inserted_id);

 echo("
Affected rows: " . $affected_rows);

 echo("
" . $last . " successfully added to the database.");

 }

 $conn->close();

 echo("
Go back to Add-Upd-DelPage");

 ?>

 [bookmark: _Toc387669746][bookmark: _Toc387670104][bookmark: _Toc387671790][bookmark: _Toc387672132]Questions for Review

 1. What is the data type of the information that the post method uses?

 a. an array.

 b. a linked list.

 c. a single data.

 d. None of the above.

 2. Which method of the connection object is used to close itself?

 a. exit

 b. end

 c. close

 d. none of the above.

 [bookmark: _Toc387669747][bookmark: _Toc387670105][bookmark: _Toc387671791][bookmark: _Toc387672133]9.4 Deleting and Updating Database Records

 Now that we have scripts for the Create and Retrieve functionalities of our very simple and basic CRUD application, we are going to write the scripts for the Update and Delete functionalities.

 First, we will modify the script retrieve3.php and save it as index.php. We want this script’s page display to act as a dashboard—a central control point of the application. Index.php will also be the opening script of our CRUD application and from its dashboard page display, we can access the Create, Update and Delete scripts of our application. This is the modified code for index.php.

 <?php

 require_once("connectINC.php");

 $sql = "SELECT * FROM employee";

 $rs = $conn->query($sql);

 if ($rs === false) {

 $errmsg = 'Wrong SQL: ' . $sql . ' Error: ' . $conn->error;

 trigger_error($errmsg, E_USER_ERROR);

 } else {

 echo("<table>");

 while ($arr = $rs->fetch_array(MYSQLI_ASSOC)) {

 echo("<tr>");

 echo("<td>" . $arr['empid'] . "</td>"

 . "<td>" . $arr['lastname'] . "</td>"

 . "<td>" . $arr['firstname'] . "</td>"

 . "<td>" . $arr['department'] . "</td>"

 . "<td>" . $arr['position']. "</td>"

 . "<td>" . $arr['salary'] . "</td>"

 . "<td><a href='delete.php?id=" . $arr['empid'] .

 "'>Delete</td>"

 . "<td><a href='updateForm.php?id=" . $arr['empid'] .

 "'>Update</td>");

 echo '</tr>';

 }

 echo("<tr>

 <td></td> <td></td> <td></td> <td></td>

 <td></td><td></td><td>Add New</td>");

 echo("</tr>");

 echo("</table>");

 }

 $conn->close();

 ?>

 When we run this script, all the sample data that you entered in table employee should appear on the screen in orderly rows and columns as this screenshot shows.

 [image:]

 Figure 9.24: The screen display generated by the script index.php which shows the rows of the employee table with Delete and Update buttons for each employee. There is also an Add New button at the bottom of the table to create a record for a new employee.

 TIP: To align the Add New button with the column of Delete buttons, add or remove the table cell tags <td></td> just before the link which defines the Add New button.

 If you compare the code of index.php with the code of retrieve3.php, you will see that we added lines of code that create Delete and Update buttons for each employee record displayed. With these two buttons, we can remove an employee’s record or modify their data. We also created an Add New button at the bottom of the screen to allow us to add new employees to the database. The Add New, Delete and Update buttons are also links to the insert.php, delete.php and updateForm.php scripts, respectively. Clicking on any of these three buttons will execute their respective PHP script.

 This is the function of the script index.php as a dashboard. Its screen display allows us to access the Create, Update and Delete functionalities of our CRUD application.

 When we link to the delete.php and updateForm.php scripts, we also have to pass the ID of the individual record that we want to either delete or update. For that, we use a query string. This is a part of a URL that contains data to be passed to web applications. You may have seen a query string before, where there is a question mark (?) at the end of a URL, and then a set of key phrases, like the following:

 http://program/path/?query_string

 The following line of sample code creates the Delete button and links it to the delete.php script. It also builds the query string that will be passed to the delete.php script.

 ><td>Delete</td>

 There is an almost identical line for the Update button.

 ><td>Update</td>

 The line to build the Add New button initially looks different and more complicated than the two previous lines but it is essentially the same. It has been pre-padded with <td></td> tags to align the Add New button with the column of Delete buttons.

 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>

 <td>Add New</td>");

 When you run the index.php script and hover your mouse over any of the Update and Delete buttons, the full query string showing a corresponding employee ID is displayed at the bottom of the screen. For example:

 localhost/delete.php?id=3

 In the following screenshot, you can see the complete query string at the lower left corner, as indicated by the big white arrow.

 [image:]

 Figure 9.25: The Delete and Update buttons are represented as links and a complete query string is displayed at the lower left of this screenshot.

 Now, we are going to write the script delete.php. This is the script that will be executed when we click on a Delete button and it will also receive the query string from the index.php script. This is the complete code of delete.php.

 <?php

 require_once("connectInc.php");

 $id = $_REQUEST['id'];

 $sql = "DELETE FROM employee WHERE empid= '" . $id . "';";

 if ($conn->query($sql) === false) {

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 } else {

 $affected_rows = $conn->affected_rows;

 echo("
" . $sql);

 echo("
Affected rows: " . $affected_rows);

 echo("
User " . $id . " deleted from the database.");

 }

 $conn->close();

 echo("
Return to Add-Upd-Del Page");

 ?>

 Before we analyze this code, let’s summarize the the general flow of logic of each of our four main scripts.

 a. Establish a link to the database with a connection object $conn.

 b. Check if $conn was successfully created.

 c. Construct either an INSERT, SELECT, UPDATE or DELETE query.

 d. Use the query method of $conn to execute the query.

 e. Check if the query executed successfully. In the case of the Retrieve functionality, obtain a resultset object and transfer its contents to an array.

 f. Close the connection.

 Now, let’s look at the code of delete.php.

 Steps a and b are carried out by the code in the script connectInc.php which we include into our delete.php script:

 require_once("connectInc.php");

 We obtain the empid of the employee whose record we are going to delete with:

 $id = $_REQUEST['id'];

 We use the value of $id in building our SQL Delete query. This is step c.

 $sql = "DELETE FROM employee WHERE empid= '" . $id . "';";

 We execute the query and check for its successful execution. (steps d and e).

 if ($conn->query($sql) === false) {

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 } else {

 . . .

 If the query is successful, we display parameters related to the query’s operation.

 $affected_rows = $conn->affected_rows;

 echo("
" . $sql);

 echo("
Affected rows: " . $affected_rows);

 echo("
User " . $id . " deleted from the database.");

 We close the connection (step f).

 $conn->close();

 We display a link to allow our user to return to the dashboard, the script index.php.

 echo("
Return to Add-Upd-Del Page");

 Now, run the script index.php and select an employee to delete. (Note the empid of the employee.) When you click the Delete button, you should then get a display similar to the following.

 DELETE FROM employee WHERE empid= '112';
Affected rows: 1
User 112 deleted from the database.
Return to Add-Upd-Del Page

 This shows the result of deleting an employee who empid is 112.

 (Replace 112 with the empid of the employee you deleted.)

 If we return to the main page, i.e. index.php, we will see this:

 You can see that the first record is not there, which indicates that our delete operation is successful.

 Now, let’s look at the complete code of updateForm.php which is actually a full HTML document.

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <meta charset=”UTF-8”>

 <title>Update Form</title>

 </head>

 <body>

 <?php

 require_once("connectInc.php");

 $id=$_REQUEST['id'];

 $sql = "SELECT * FROM employee WHERE empid = '" . $id . "';";

 $rs = $conn->query($sql);

 if ($rs === false) {

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 die("Select Error: " . $sql);

 } else {

 $arr = $rs->fetch_array(MYSQLI_ASSOC);

 }

 $conn->close();

 ?>

 <form action="updateProcess.php" method="post">

 <input type="hidden" name="id" value="<?php print($id); ?>" />

 <p>Last Name

 <input type="text" value="<?php print($arr['lastname']) ?>" name="last"/></p>

 <p>First Name

 <input type="text" value="<?php print($arr['firstname']) ?>" name="first"/></p>

 <p>Department

 <select name="department">

 <option <?php if($arr['department']==1) { print('selected'); } ?> value="1">Accounting</option>

 <option <?php if($arr['department']==2) { print('selected'); } ?> value="2">Sales</option>

 <option <?php if($arr['department']==3) { print('selected'); } ?> value="3">Information Technology</option>

 <option <?php if($arr['department']==4) { print('selected'); } ?> value="4">Management</option>

 </select></p>

 <p>Position

 <input type="text" value="<?php print($arr['position']) ?>" name="position"/></p>

 <p>Salary

 <input type="text" value="<?php print($arr['salary']) ?>" name="salary" /></p>

 <input type="submit" value="Update Information" />

 </form>

 </body>

 </html>

 The function of this form is to display the data of one employee. The following lines of PHP script, placed in the <head></head> section of our HTML document, perform the necessary database operations to retrieve the data of one employee.

 require_once("connectInc.php");

 $id=$_REQUEST['id'];

 $sql = "SELECT * FROM employee WHERE empid = '" . $id . "';";

 $rs = $conn->query($sql);

 if ($rs === false) {

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 die("Select Error: " . $sql);

 } else {

 $arr = $rs->fetch_array(MYSQLI_ASSOC);

 }

 $conn->close();

 As you read and analyze this code, note that it also follows the pattern of steps a-f which we just recently detailed as we analyzed the code of delete.php.)

 a. Create a connection object, $conn.

 b. Check if $conn was successfully created.

 c. Construct SQL query.

 d. Execute query with query method of connection object.

 e. Check if query executed successfully. (For SELECT queries, process the resultset object, $rs.)

 f. Close connection.

 The reason we keep repeating these six steps is that this will be the basic pattern of any PHP script that accesses a MySQL database. Understanding and mastering the logic of those six steps will spare you any future headaches when accessing MySQL databases!

 Now, the retrieved data of one employee is stored in the associative array, $arr, by the line:

 $arr = $rs->fetch_array(MYSQLI_ASSOC);

 The data in this array is then used by the form elements to display the data.

 Let’s analyze the following HTML and PHP code which displays the data in the associative array, $arr:

 <input type="text" value="<?php print($arr['lastname']) ?>" name="last" /></p>

 Here, we set the value attribute of the <input> element to the value of an element of the array $arr, specifically the element indexed by the key lastname. We use PHP code to do this. In typing this line, you really have to be careful to place every character where they belong, otherwise you get all kinds of errors.

 In the case of the Department field, it is a different process. We have to test individually for each of the departmentId values (1-4) before we can display the corresponding departmentName. Again, you really have to be careful in typing this line, misplace any character, especially a comma, quotation mark, forward slash, opening or closing braces, brackets or parentheses, and you get all kinds of errors.

 <option <?php if($arr['department']==1) { print('selected'); } ?> value="1">Accounting</option>

 Lastly, we have to deal with the empid field. Remember, this field is a primary key and is auto-generated by the MySQL database. Once it is assigned to an employee, it can never be modified. But we need to retrieve the value of empid from the database and securely preserve this value during our Update procedures, because it will have to be passed back to the MySQL database to identify the exact record of the employee table that has to be updated with our changes.

 Thus, we will use a hidden field as this line of code shows.

 <input type="hidden" name="id" value="<?php print($id); ?>" />

 Storing the empid field in a hidden <input> element ensures that this value will also be included in the post method.

 Now, consider the action attribute of the <form> element. This attribute is set to the script updateProcess.php.

 <form action="updateProcess.php" method="post">

 In order to ensure that the updated information is saved in the database, we are going to create the file updateProcess.php, with the following code:

 <?php

 require_once("ConnectInc.php");

 $id = $_REQUEST['id'];

 $last = $_REQUEST['last'];

 $first= $_REQUEST['first'];

 $department= $_REQUEST['department'];

 $position= $_REQUEST['position'];

 $salary= $_REQUEST['salary'];

 echo($last . ' ' .

 $first . ' ' .

 $department . ' ' .

 $position . ' ' .

 $salary);

 $sql= "UPDATE employee SET " .

 "lastname = '" . $last . "', " .

 "firstname = '" . $first . "', " .

 "department = '" . $department . "', " .

 "position = '" . $position . "', " .

 "salary = '" . $salary . "' WHERE empid = '" . $id . "';";

 if ($conn->query($sql) == false) {

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 } else {

 $affected_rows = $conn->affected_rows;

 echo("
" . $sql);

 echo("
Affected rows: " . $affected_rows);

 }

 $conn->close();

 echo("
User " . $id . " has been updated.
Back to Add-Upd-Del Page.");

 ?>

 Here, we have used the SQL query for an update operation, where we have set the fields to their new values, and used the where clause to indicate the record that we are actually updating.

 Now, run the script index.php, select an employee and then click the Update button for that employee’s record. You should get the following page (with your corresponding test data).

 [image:]

 Figure 9.26: Updating the data of one employee.

 Make whatever changes you want to any of the fields. In fact, to completely test the update.php and updateProcess.php scripts, make changes to all the fields! Then click the Update Information button. You should get a display similar to the following (with your corresponding test data).

 Obispo Vangie 4 Manager 69000
UPDATE employee SET lastname = 'Obispo', firstname = 'Vangie', department = '4', position = 'Manager', salary = '69000' WHERE empid = '111';
Affected rows: 1
User 111 has been updated.
Back to Add-Upd-Del Page.

 When you click the Add-Upd-Del Page link, you will be returned to the screen display of index.php. Check if the data you updated was actually modified.

 You could also use phpMyAdmin to make changes to any field of any table in the database, but for now, just use phpMyAdmin to verify the changes we make using our CRUD application.

 [image:]

 Figure 9.27: Using phpMyAdmin to edit fields of tables in a database.

 Our simple and basic CRUD application is complete.

 [bookmark: _Toc387669748][bookmark: _Toc387670106][bookmark: _Toc387671792][bookmark: _Toc387672134]Questions for Review

 1. Which symbol is used in a query string?

 a. #

 b. $

 c. &

 d. ?

 2. What is $_REQUEST[]?

 a. a function

 b. a command

 c. an array

 d. a super global array

 [bookmark: _Toc387669749][bookmark: _Toc387670107][bookmark: _Toc387671793][bookmark: _Toc387672135]Chapter 9 Lab Exercise

 1. Ensure that your MAMP or WAMP server stack is downloaded,

 installed and running. You can download the WAMP server for Windows at www.wampserver.com/en/. You can download the MAMP server for Mac at www.mamp.info.

 2. Set up an HTML document and embed an opening and closing PHP tag in the <body> section of the document. Save that document in your www folder (Windows) or htdocs folder (Macintosh) as described.

 3. Create a database to track students and grades in a Computer Science Class. Create a database in mySQL as follows:

 Database Name: CSClassData

 Number of Tables: 1

 4. In the CSClassData, create a table called students. The table should have the following fields:

 studentID int(5)

 lastName varchar(40)

 firstName varchar(20)

 test1Grade int(3)

 test2Grade int(3)

 test3Grade int(3)

 test4Grade int(3)

 finalExamGrade int(3)

 5. Enter fictional data for 10 students including a first name, last name, and grades for all 5 tests. (Grade on the standard scale of 0-100).

 6. Create a database connection script that connects to your MySQL database and the CSCLassData Database you created.

 7. Create a page called grade_list.php. On this page, output all of the grades from the database by student. You should use a table for this.

 8. Once you have output all of the grades, add two columns in the table. The first column should contain the numerical average the student received by averaging the five grades.

 The second new column should display their final grade in A-F form according to the following:

 	A 90-100

 	B 80-89

 	C 70-79

 	D 60-69

 	F Below 60

 You should be able to add the final two columns without altering anything in the database—these will be calculated fields and not stored database fields.

 9. Use CSS to make your output table more readable.

 10. To the right of the calculated average and letter grade field, add links to delete and edit pages. Call the delete page grades_delete.php and the update page grades_updateForm.php. At the bottom of the table, add a link to call the Add New Student page, grade_insert.php.

 11. Write PHP code to make the update, delete and create functional as demonstrated in this chapter.

 12. Make sure that pages are linked to each other so that the user may easily navigate between functions in your completed PHP application.

 [bookmark: _Toc387669750][bookmark: _Toc387670108][bookmark: _Toc387671794][bookmark: _Toc387672136]Chapter 9 Lab Solutions

 File: gradesConnect.php

 <?php

 define("HOSTNAME", "localhost");

 define("USERNAME", "root");

 define("PASSWORD", "");

 define("DB_NAME", "CSClassData");

 $conn = new mysqli(HOSTNAME, USERNAME, PASSWORD, DB_NAME);

 if ($conn->connect_errno) {

 echo("
Failed to connect to MySQL: (" . $conn->connect_errno . ") " . $conn->connect_error);

 die('
Program Terminated');

 }

 ?>

 File: grades_delete.php

 <?php

 require_once("gradesConnect.php");

 $id = $_REQUEST['id'];

 $sql = "DELETE FROM students WHERE studentID= '" . $id . "';";

 if ($conn->query($sql) === false) {

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 } else {

 echo("
" . $sql);

 $affected_rows = $conn->affected_rows;

 echo("
Affected rows: " . $affected_rows);

 echo("
User " . $id . " deleted from the database.");

 }

 $conn->close();

 echo("
Return to Add-Upd-Del Page");

 ?>

 File: grades_list.php

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Grade List</title>

 <style>

 table, th, td, tr {

 border: 1px solid black;

 border-collapse: collapse;

 }

 </style>

 <?php

 require_once("gradesConnect.php");

 $sql = "SELECT * FROM students";

 $rs = $conn->query($sql);

 if ($rs === false) {

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 die();

 }

 $conn->close();

 ?>

 </head>

 <body>

 <table>

 <tr>

 <th>Student ID</th>

 <th>Last Name</th>

 <th>First Name</th>

 <th>Test 1</th>

 <th>Test 2</th>

 <th>Test 3</th>

 <th>Test 4</th>

 <th>Final Exam</th>

 <th>Average</th>

 <th>Letter Grade</th>

 </tr>

 <?php

 while ($arr = $rs->fetch_array(MYSQLI_ASSOC)) {

 $average = ($arr['test1Grade'] + $arr['test2Grade'] + $arr['test3Grade'] + $arr['test4Grade'] + $arr['finalExamGrade'])/5;

 if ($average > 89) {

 $letterGrade = 'A';

 } elseif ($average > 79) {

 $letterGrade = 'B';

 } elseif ($average > 69) {

 $letterGrade = 'C';

 } elseif ($average > 59) {

 $letterGrade = 'D';

 } else {

 $letterGrade = 'F';

 }

 echo("<tr id='" . $arr['studentID'] . "'>");

 echo("<td>" . $arr['studentID'] . "</td>");

 echo("<td>" . $arr['lastName'] . "</td>");

 echo("<td>" . $arr['firstName'] . "</td>");

 echo("<td>" . $arr['test1Grade'] . "</td>");

 echo("<td>" . $arr['test2Grade'] . "</td>");

 echo("<td>" . $arr['test3Grade'] . "</td>");

 echo("<td>" . $arr['test4Grade'] . "</td>");

 echo("<td>" . $arr['finalExamGrade'] . "</td>");

 echo("<td>" . $average . "</td>");

 echo("<td>" . $letterGrade . "</td>");

 echo("<td>Update</td>");

 echo("<td>Delete</td>");

 echo("</tr>");

 }

 echo("<tr>

 <td></td> <td></td> <td></td> <td></td> <td></td>

 <td></td> <td></td> <td></td> <td></td> <td></td>

 <td>Add New</td>");

 echo("</tr>");

 ?>

 </table>

 </body>

 </html>

 File: grades_updateForm.php

 <?php

 require_once("gradesConnect.php");

 $id = $_REQUEST['id'];

 $sql = "SELECT * FROM students WHERE studentID = '" . $id . "';";

 $rs = $conn->query($sql);

 if ($rs === false) {

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 die("Select Error: " . $sql);

 } else {

 $arr = $rs->fetch_array(MYSQLI_ASSOC);

 }

 $conn->close();

 ?>

 <html lang="en">

 <head>

 <title>Update Student</title>

 </head>

 <body>

 <form action="grades_updateProcess.php" method="post">

 <input type="hidden" value="<?php print($arr['studentID']) ?>" name="id" />

 <p>Last Name
 <input type="text" value="<?php print($row['lastName']) ?>" name="last"/></p>

 <p>First Name
 <input type="text" value="<?php print($arr['firstName']) ?>" name="first"/></p>

 <p>Test 1 Grade
 <input type="text" value="<?php print($arr['test1Grade']) ?>" name="test1Grade"/></p>

 <p>Test 2 Grade
 <input type="text" value="<?php print($arr['test2Grade']) ?>" name="test2Grade"/></p>

 <p>Test 3 Grade
 <input type="text" value="<?php print($arr['test3Grade']) ?>" name="test3Grade"/></p>

 <p>Test 4 Grade
 <input type="text" value="<?php print($arr['test4Grade']) ?>" name="test4Grade"/></p>

 <p>Final Exam Grade
 <input type="text" value="<?php print($arr['finalExamGrade']) ?>" name="finalExamGrade"/></p>

 <input type="submit" value="Update Information" />

 </form>

 </body>

 </html>

 File: grades_insert.php

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Insert Student</title>

 </head>

 <body>

 <form action="grades_insertProcess.php" method="post">

 <p>Last Name

 <input type="text" name="last"/></p>

 <p>First Name

 <input type="text" name="first"/></p>

 <p>Test 1 Grade

 <input type="text" name="test1Grade" /></p>

 <p>Test 2 Grade

 <input type="text" name="test2Grade" /></p>

 <p>Test 3 Grade

 <input type="text" name="test3Grade" /></p>

 <p>Test 4 Grade

 <input type="text" name="test4Grade" /></p>

 <p>Final Exam Grade

 <input type="text" name="finalExamGrade" /></p>

 <input type="submit" value="Save Information" />

 </form>

 </body>

 </html>

 File: grades_insertProcess.php

 <?php

 require_once("gradesConnect.php");

 $last = $_REQUEST['last'];

 $first= $_REQUEST['first'];

 $grade1 = $_REQUEST['test1Grade'];

 $grade2 = $_REQUEST['test2Grade'];

 $grade3 = $_REQUEST['test3Grade'];

 $grade4 = $_REQUEST['test4Grade'];

 $final = $_REQUEST['finalExamGrade'];

 $sql= "INSERT INTO students VALUES (''," .

 "'" . $last . "'," .

 "'" . $first . "'," .

 "'" . $grade1 . "'," .

 "'" . $grade2 . "'," .

 "'" . $grade3 . "'," .

 "'" . $grade4 . "'," .

 "'" . $final . "')";

 if ($conn->query($sql) == false) {

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 } else {

 $last_inserted_id = $conn->insert_id;

 $affected_rows = $conn->affected_rows;

 echo("
Last Inserted Id: " . $last_inserted_id);

 echo("
Affected rows: " . $affected_rows);

 echo("
" . $last . " successfully added to the database.");

 }

 $conn->close();

 echo("
Go back to Add-Upd-Del Page");

 ?>

 File: grades_updateProcess.php

 <?php

 require_once("gradesConnect.php");

 $id = $_REQUEST['id'];

 $last = $_REQUEST['last'];

 $first = $_REQUEST['first'];

 $grade1 = $_REQUEST['test1Grade'];

 $grade2 = $_REQUEST['test2Grade'];

 $grade3 = $_REQUEST['test3Grade'];

 $grade4 = $_REQUEST['test4Grade'];

 $final = $_REQUEST['finalExamGrade'];

 $sql= "UPDATE students SET " .

 "lastName = '" . $last . "', " .

 "firstName = '" . $first . "', " .

 "test1Grade = '" . $grade1 . "', " .

 "test2Grade = '" . $grade2 . "', " .

 "test3Grade = '" . $grade3 . "', " .

 "test4Grade = '" . $grade4 . "', " .

 "finalExamGrade = '" . $final . "' WHERE studentID = '" . $id . "';";

 if ($conn->query($sql) == false) {

 trigger_error('Wrong SQL: ' . $sql . ' Error: ' . $conn->error, E_USER_ERROR);

 } else {

 $affected_rows = $conn->affected_rows;

 echo("
Affected rows: " . $affected_rows);

 }

 $conn->close();

 echo("User " . $id . " has been updated. Back to Add-Upd-Del Page.");

 ?>

 [bookmark: _Toc387669751][bookmark: _Toc387670109][bookmark: _Toc387671795][bookmark: _Toc387672137]Chapter 9 Summary

 This has been a chapter heavy in concepts and techniques. Besides learning additional PHP code, you learned how to use a web application, phpMyAdmin, to perform database operations on a MySQL database. You learned how to build SQL statements to insert, retrieve, update and delete data in a MySQL database. You learned how to use an application programming interface so that your PHP code can access a MySQL database. Using all those, you built a simple and basic CRUD (Create, Retrieve, Update, Delete) application. There’s still a lot to learn and master about using PHP to access databases, but if you understand and retain the concepts and techniques explained here, you’re on your way to being an expert PHP and MySQL geek.

 In the next chapter, we will discuss some useful PHP classes and objects. We will also learn how to access and manipulate date and time information using PHP.

 [bookmark: _Toc387669752][bookmark: _Toc387670110][bookmark: _Toc387671796][bookmark: _Toc387672138]Chapter 10: Useful PHP Classes and Objects

 [bookmark: _Toc387669753][bookmark: _Toc387670111]Chapter Objectives:

 	You will learn two important PHP date functions, date() and time(), and how to use these functions to access and manipulate date and time information.

 	You will learn how to manipulate strings using some of the many string functions of PHP.

 	You will understand how to use sessions and cookies to maintain state between browser requests in your PHP application.

 [bookmark: _Toc387669754][bookmark: _Toc387670112][bookmark: _Toc387671797][bookmark: _Toc387672139]10.1 The Date Function

 All computer programs have to manipulate and work with dates and times. For example, web applications have to record the date and time a page was accessed and how long it was accessed. This is a relatively simple task that is made slightly more complicated by having to consider 24 different time zones. Accounting programs also have to calculate what date a reoccuring payment falls on, which is complicated further by the fact that each month of the year has a different number of days and leap years have to be considered. Besides those types of calculations, computer programs also have to take into account how to present dates and times. Does the user prefer February 14, 2001 or 2001-02-14 or 02-14-2001? Do you display time as military time, 17:45 or 12-hour time, 5:45p?

 Some programming systems have a specific date and time data type. PHP doesn’t, but PHP does provide numerous date and time functions and objects (see http://php.net/datetime). In this section of this chapter, we will look at the time() and date() functions.

 Every computer keeps track of the current date and time by using a built-in clock. You can obtain this built-in clock’s date and time with the time() function. If you type the following code in your browser:

 <?php

 print("
" . time());

 ?>

 You may be surprised to see a 10-digit integer.

 1395034340

 This is a timestamp. It is the number of seconds between midnight of January 1, 1970 and the current date and time. This is the format that computers use to monitor and store dates and times because in this integer format date and time calculations are much easier.

 If you execute the above script again, you may get something like:

 1395034355

 Notice that the last two digits have changed from 40 to 55, meaning that 15 seconds have elapsed between the first and second time you executed the script. The computer’s built in clock is running and keeping track of time.

 Now, we can easily convert this timestamp into a date and time format that we can understand by using the date() function. For example, the script:

 <?php

 date("D - F d, Y", 1314934340);

 ?>

 will return

 Fri - September 02, 2011

 The date function accepts two arguments. The first is a mandatory format string, "D - F d, Y", that specifies how the date and time will be formatted. The second argument is optional. It is the timestamp (1314934340) that we wish to format. If the second argument is omitted, the date() function will use the timestamp returned by the time() function.

 The meaning of each character of the format string is summarized in the following table.

 	 Character

 	 Description

 	 d

 	 The 2-digit day of the month with a leading zero if needed.

 	 D

 	 The day of the week as a three-letter string (ex. “Mon”).

 	 F

 	 The month as a full word (ex. “January”).

 	 Y

 	 The year as a four-digit number.

 Table 10.1: A few of the character formats for the format string for the date() function.

 Study the previous date format string carefully and note how it results in the displayed output. Now, let’s make a slight change in the previous date format string so that it now reads:

 date("l - F d, Y", 1314934340);

 Did you spot the change? It is the “l” (lowercase “L”) right after the opening double quotes. The display will now be:

 Friday - September 02, 2011

 This is the meaning of the “l” (lowercase “L”) character in the date format string:

 	 Character

 	 Description

 	 l (lowercase “L”)

 	 The day of the week as a full word (for example, “Monday”).

 Table 10.2: Lowercase “L” character format for the format string for the date() function.

 There are many other character formats for formatting dates in the date() function. They can be found at http://php.net/date.

 Now, let’s modify our script to include character formats for formatting time:

 <?php

 print(date("D F d, Y h:i:s"));

 ?>

 This script will yield:

 Mon - March 17, 2014 11:47:58

 We did not provide a second argument, so the date() function used the timestamp returned by the time() function and formatted the time according to our newly added format string for formatting time, “h:i:s". The meaning of each character for formatting time is summarized in the following table.

 	 Character

 	 Description

 	 h

 	 The hour in 12 - hour format, with leading zeros (01 – 12).

 	 i

 	 Minutes, with leading zeros (00 – 59).

 	 s

 	 Minutes, with leading zeros (00 – 59).

 Table 10.3: A few of the character formats for the format string for the time() function

 At the start of this section, we stated that PHP stores the timestamp, its internal clock, as a 10-digit integer because date and time calculations are much easier in this format. So, now let’s calculate what the date and time will be 30 days from now. Here is the code to execute in your browser:

 [bookmark: _Toc387669755][bookmark: _Toc387670113]Code to Calculate 30 Days from Now

 <?php

 print(date("D F d, Y h:i:s"));

 print("
");

 print(time());

 $thirtyDays = 60 * 60 * 24 * 30;

 print("
30 days from right now: " . (time()+ $thirtyDays));

 ?>

 You should get something like this (of course, the current date and time will depend on when you execute this code):

 [image:]

 Figure 10.1: Various outputs of the date() function.

 The 10-digit timestamp is of little use to us, so let’s format it in a more readable and usable form. We use the date() function and this is the code to add:

 print("
30 days from right now: " . (date("D F d, Y h:i:s",time()+ $thirtyDays)));

 Viewing it in the browser, we will see something similar to this:

 [image:]

 Figure 10.2: The date and time, 30 days after the current date and time, is displayed more clearly.

 We can also subtract days by simply replacing the plus sign (+) with a minus sign (-). Add the following code to the previous script and see the results in the browser.

 print("
30 days before: " . (time()- $thirtyDays));

 We can also get the exact time 18 hours from now. Here is the code to add:

 $eighteenHours = 60 * 60 *18;

 print("
18 Hours from now: " . (date("D F d, Y h:i:s", time() + $eighteenHours)));

 Notice that we are adding 18 hours by adding 60 * 60 * 18 or the number of seconds in 18 hours. In the browser, we will see this:

 [image:]

 Figure 10.3: The exact time is displayed, 18 hours from the current time.

 This has been a quick review of the date() and time() functions in PHP. Later in the section on cookies, we will use the time() function again specifically when we set the future expiration date and time of cookies. For a complete reference of all PHP date and time functions, please go to http://php.net/date.

 [bookmark: _Toc387669756][bookmark: _Toc387670114][bookmark: _Toc387671798][bookmark: _Toc387672140]Complete Code Listing

 <?php

 print(date("D F d, Y h:i:s"));

 print("
");

 print(time());

 $thirtyDays = 60 * 60 * 24 * 30;

 print("
30 days from right now: " . (time()+ $thirtyDays));

 print("
30 days from right now: " . (date("D F d, Y h:i:s",time()+ $thirtyDays)));

 $EighteenHours = 60 * 60 *18;

 print("
18 Hours from now: " . (date("D F d, Y h:i:s", time() + $EighteenHours)));

 ?>

 [bookmark: _Toc387669757][bookmark: _Toc387670115][bookmark: _Toc387671799][bookmark: _Toc387672141]Questions for Review

 1. How many arguments does the date() function have?

 a. One

 b. Two

 c. Three

 d. Four

 2. Which letter is used to obtain the full textual display of the month?

 a. F

 b. M

 c. m

 d. D

 [bookmark: _Toc387669758][bookmark: _Toc387670116][bookmark: _Toc387671800][bookmark: _Toc387672142]10.2 Strings in PHP

 In programming, a string is a series of characters. Here are examples of valid strings:

 “Hi There!”

 “How are you?”

 “123456”

 “!@#$%”

 PHP has some unique features when working with strings.

 The first concerns the use of single and double quotes. Let’s consider the following PHP code:

 <?php

 $name = "Mark";

 echo("My name is $name");

 echo('
My name is $name');

 ?>

 In the browser, we will see this:

 [image:]

 Figure 10.4: The use of single and double quotation marks in PHP.

 We can see that within the double quotation marks, expressions and variables are evaluated, while within the single quotation marks they are not.

 The second unique feature of PHP strings is the ability to define large blocks of strings by use of the heredoc syntax.

 TIP: In computer science, a here document is a file literal or input stream literal: it is a section of a source code file that is treated as if it were a separate file.

 Heredoc lets you take a block of code, no matter how large, and make it into a string. The symbol that is used to display heredoc is <<<. This is an example.

 [bookmark: _Toc387669759][bookmark: _Toc387670117][bookmark: _Toc387671801][bookmark: _Toc387672143]Heredoc Code Sample

 $poem = <<< TEST

 Roses are Red

 Violets are Blue

 I'm no fan of Heredocs

 But I can teach you.

 TEST;

 echo($poem);

 Viewing in the browser, we will see this:

 [image:]

 Figure 10.5: The use of heredoc in PHP.

 Using heredoc can be very tricky. Study this example carefully, as well as the explanations in the four lettered paragraphs a, b, c and d.

 $string = <<< identifier

 Your string goes here. It can include commas, quotes etc.

 identifier;

 a. identifier can be anything. In the previous example, TEST was used.

 b. The leading tag, <<< identifier, tells the PHP parser that you’re writing a heredoc. There must be a space between the “<<<” and the “identifier.” There should be nothing following this leading tag.

 c. The closing tag, identifier, should be on a single line without anything else. Hit enter if you need to ensure it is on a single line.

 d. Do not indent the closing tag.

 Now, we are going to try out some of the many other PHP string functions. If you take a look at the PHP manual, you will find a number of available string functions as shown here:

 [image:]

 Figure 10.6: Some of the string functions used in PHP, taken from

 http://www.php.net/manual/en/ref.strings.php.

 Let’s start with the str_split() function, which converts a string into an array. If you look at the syntax of this function in the PHP manual, you will see this:

 [image:]

 Figure 10.7: The syntax of the str_split() function taken from http://www.php.net/manual/en/function.str-split.php.

 Let’s use this str_split() function in our code:

 $name = "Mark";

 print_r(str_split($name));

 The print_r() function displays an array in human readable form. In the browser, we will see this:

 [image:]

 Figure 10.8: The result of using the str_split() function.

 Here you can see that the str_split() function took the letters of the name Mark, and split them into an array, where each letter occupies a single index of the array.

 Let’s try the strrev() function which is used for reversing the characters of a string. If we use the following code:

 print(strrev("Wheel of Fortune"));

 In the browser, we will see:

 [image:]

 Figure 10.9: The result after using the strrev() function.

 Here, you can see that the string “Wheel of Fortune” is perfectly reversed by using the strrev() function.

 We can also get a part or portion of the string using the substr() function. This function has three arguments: the original string, the starting point, and the length of the substring, that is, the number of characters of the original string that we want to display. Let’s use the code in this way:

 print(substr($poem, 0, 30));

 In the browser we will get the following output, where the first 30 characters are displayed as a substring:

 [image:]

 Figure 10.10: The first 30 characters of the string are displayed.

 There are many other string functions (take a look at http://www.php.net/manual/en/ref.strings.php) that are available in PHP and you will have no problem finding a function or a combination of several functions to accomplish a specific programming task.

 [bookmark: _Toc387669760][bookmark: _Toc387670118][bookmark: _Toc387671802][bookmark: _Toc387672144]Complete Code Listing

 <?php

 $name = "Mark";

 echo("My name is $name");

 echo('
My name is $name');

 echo("
");

 $poem = <<<TEST

 Roses are Red

 Violets are Blue

 I'm no fan of Heredocs

 But I can teach you!

 TEST;

 echo($poem);

 print_r(str_split($name));

 print("
");

 print(strrev("Wheel of Fortune"));

 print("
");

 print("
");

 print(substr($poem, 0, 30));

 ?>

 [bookmark: _Toc387669761][bookmark: _Toc387670119][bookmark: _Toc387671803][bookmark: _Toc387672145]Questions for Review

 1. The symbol that is used to display heredoc is:

 a. <<<

 b. >>>

 c. +++

 d. ---

 2. What function converts a string into an array?

 a. strrev()

 b. str_split()

 c. str_con()

 d. str_arr()

 [bookmark: _Toc387669762][bookmark: _Toc387670120][bookmark: _Toc387671804][bookmark: _Toc387672146]10.3 Sessions

 When you surf the Internet, you move from one webpage to another by clicking on links. When you click on a link, the web server interprets this as a request for the page pointed to by the link you clicked. It loads the page and executes that page’s HTML and CSS commands as well as any PHP scripts.

 PHP variables will be initialized, computations performed, text formatted, images resized and positioned, and then the fully rendered page is sent to your browser. The web server then erases that page from its memory. The values of any PHP variables are lost as well as the results of any computations. If for some reason you later click on that same link again, the web server will go through the same process again with no recollection that it had rendered this page before. This is what is meant by “stateless.”

 This was fine in the early, primitive days of the Internet when most of the time information was displayed in nicely formatted pages. But now, in the era of e-commerce and interactivity, some connection between webpages has to be maintained. As you move from one webpage to another and back, the values of variables in a webpage have to be preserved and passed on to the next webpages. This is what is meant by “maintaining state” or in more specific terms “preserving an application’s state between browser requests.”

 For example, a shopping cart application has to remember what items you selected from the various webpages that you visited. In a massively multiplayer online role playing game (mmorpg), your character has to maintain its health status, weapons, spells, and so on. Not only as you move from level to level, but also as you log out on one day and log in on another day.

 PHP has several mechanisms for maintaining state between webpages, namely hidden form fields, query strings, cookies and sessions. We will survey only sessions (in this section) and cookies (in the next) which are the two most commonly used methods for maintaining state between browser requests.

 A PHP session is a temporary file on the server where you can store data. A short session ID (SID) is used to identify and protect that file. This SID is sent by the server to the browser as part of a cookie. The next time the browser makes a request to the server, it sends the SID cookie back to the server allowing the server to retrieve any session data it previously saved and makes this session data available in the superglobal array $_SESSION. (The SID generated by the server is unique, random and practically impossible to guess, making it—and your session data—secure from hackers.)

 Although you can store a relatively adequate amount of data in a server session file (more data than you can store in a 4kb cookie), keep in mind that sessions are primarily used for storing temporary data to maintain state between webpages. Once you close your browser, the session data is no longer available. To store large amounts of data on a permanent basis, a database would be the appropriate tool.

 When working with sessions, whether creating a session or retrieving data from a previous session, we always start our code with the session_start() function. This function creates a session or resumes one based on a SID.

 When you call session_start(), this function will search for an existing SID in the client and if it finds one, it will send this SID to the server. The server then uses this SID to retrieve data from a previous session file. If no SID is found, session_start() won’t send anything and the server, detecting this, will automatically create an SID and send it back to the browser and wait for any data to be saved in a session file it has created. All this takes place automatically just by calling the session_start().

 There is one warning, though. The code that contains the call to session_start() should be placed in the <head></head> section of an HTML document. This is to make sure that the call to session_start() takes place before any output is sent to the browser. (This same warning also holds when we discuss cookies.)

 Take a look at the following code and input it into a script named sessions.php.

 [bookmark: _Toc387669763][bookmark: _Toc387670121]Sessions.php

 <?php

 session_start();

 $name="Mark";

 $_SESSION['name'] = $name;

 $_SESSION['password'] = "lobsterchops";

 $_SESSION['age'] = "37";

 ?>

 Sessions 2

 As you can see, our first line of code is the call to the session_start() function. We then start saving data to a session file on the server by assigning that data as key-value pairs to the associative superglobal array $_SESSION. It’s that simple. We just saved the values “Mark”, “lobsterchops” and “37” to a session file on the server. Those saved values were assigned the respective keys “name”, “password” and “age”. It is by means of those keys that we retrieve their respective values. Note the last line which is a link to another script sessions2.php.

 In sessions2.php we are going to retrieve the session data which we saved in sessions.php. This is the code for sessions2.php. Note that our first line of code is a call to session_start().

 [bookmark: _Toc387669764][bookmark: _Toc387670122]Sessions2.php

 <?php

 session_start();

 $name = $_SESSION['name'];

 $pw = $_SESSION['password'];

 $age = $_SESSION['age'];

 print("Stored in the session: $name $pw $age");

 ?>

 Now, let’s run sessions.php. This is what you will see in the browser. Note that this is a hyperlink as evidenced by the different font color and the underscoring.

 Session 2

 When you click on this link you execute the script sessions2.php and get this display in your browser.

 Stored in the session: Mark lobsterchops 37

 Sessions are automatically deleted when you exit your browser but you may find it necessary to erase a session’s data before it is automatically deleted. This is achieved with the session_destroy() function. Let’s add the following two lines of code to the end of the script sessions2.php.

 session_destroy();

 print("Session Destroyed. Please go to Sessions 3.")

 Sessions2.php will now retrieve the session values saved by sessions.php and then destroy the session. Now, to verify that the session has indeed been destroyed, we will create the script sessions3.php which contains the following code.

 [bookmark: _Toc387669765][bookmark: _Toc387670123]Sessions3.php

 <?php

 session_start();

 if(isset($_SESSION['name']))

 {

 $name = $_SESSION['name'];

 $pw = $_SESSION['password'];

 $age = $_SESSION['age'];

 } else

 {

 print("Session appears to have been terminated.");

 }

 ?>

 Session 1

 The isset() function returns TRUE if a variable is not set to NULL. It returns FALSE if otherwise.

 Let’s now consecutively execute the scripts sessions.php, sessions2.php and sessions3.php. This will result in the following three respective screens.

 [image:]

 Figure 10.11: Screen output of script sessions.php

 [image:]

 Figure 10.12: Screen output of script sessions2.php

 [image:]

 Figure 10.13: Screen output of script sessions3.php

 [bookmark: _Toc387669766][bookmark: _Toc387670124][bookmark: _Toc387671805][bookmark: _Toc387672147]Complete Code Listing

 Sessions.php

 <?php

 session_start();

 $name="Mark";

 $_SESSION['name'] = $name;

 $_SESSION['password'] = "lobsterchops";

 $_SESSION['age'] = "37";

 ?>

 Sessions 2

 Sessions2.php

 <?php

 session_start();

 $name = $_SESSION['name'];

 $pw = $_SESSION['password'];

 $age = $_SESSION['age'];

 print("Stored in the session: $name $pw $age");

 session_destroy();

 print("
 Session Destroyed. Please go to Sessions 3. </br>")

 ?>

 Sessions3.php

 <?php

 session_start();

 if(isset($_SESSION['name']))

 {

 $name = $_SESSION['name'];

 $pw = $_SESSION['password'];

 $age = $_SESSION['age'];

 } else

 {

 print("Session appears to have been terminated.");

 }

 ?>

 Session 1

 [bookmark: _Toc387669767][bookmark: _Toc387670125][bookmark: _Toc387671806][bookmark: _Toc387672148]Questions for Review

 1. What function is used to begin each session?

 a. session_start()

 b. session_begin()

 c. session_initiate()

 d. None of the above

 2. What function is used when we no longer want a session?

 a. session_end()

 b. session_finish()

 c. session_destroy()

 d. None of the above

 [bookmark: _Toc387669768][bookmark: _Toc387670126][bookmark: _Toc387671807][bookmark: _Toc387672149]10.4 Cookies

 In the previous section, we discussed sessions, which are temporary files on the server where the client’s browser stores data to maintain state between browser requests. Cookies, on the other hand, are files no larger than 4kb which are left by the server on the client’s computer.

 When a browser requests a page from the server, the server then sends one or more cookies to the browser in the headers of its response to the browser request.

 The next time the browser makes a request to that same server that left the cookie, data in the cookie is automatically sent to the server within the request. By means of the cookie, the server “remembers” this particular browser client and can use the data in the cookie sent by this client to tailor responses uniquely to this particular client browser.

 Cookies can only be retrieved by the servers that created them, thus providing a certain level of security. Still, they are vulnerable to hacker attacks and should be used only for non-critical data, such as user preferences. Browsers can also disable cookie support, cutting any access to cookies. Some clients may not support cookies at all. There is also a limit to how many cookies a client can hold. Only 20 cookies are allowed per domain and a client can hold only 300 cookies at any one time. Still, for non-security critical data such as user preferences, cookies can be an invaluable tool in maintaining state.

 The data in a cookie should be arranged in the following sequential order of parameters:

 	 Cookie Field

 	 Description

 	 name

 	 A unique name for a particular cookie. No whitespaces or semicolons are allowed.

 	 value

 	 The arbitrary string value attached to this cookie.

 	 expire

 	 The expiration date for this cookie. The expiration is specified as a timestamp or the number of seconds since midnight January 1, 1970 (GMT).

 	 path

 	 The browser will return the cookie only for URLs below this path.

 	 domain

 	 The browser will return the cookie only for URLs within this domain.

 	 secure

 	 The browser will transmit the cookie only over https connections.

 Table 10.4: Mandatory sequential order of cookie parameters.

 Creating a cookie and sending it to the browser is easy with the setcookie() function. This function sends the appropriate HTTP header to create the cookie in the browser. The arguments of the setcookie() function are the same parameters in the order shown in the previous table. Generally, though, you need to provide only the first three or first four parameters, (name, value, expire, and path) but you should provide six arguments whenever possible.

 The setcookie() function should also be called before sending any output to the browser, because setcookie() sends the cookie within the server’s HTTP response header. If you send output to the browser before calling setcookie(), PHP will automatically send the response headers first. Setcookie() thus loses its ability to send the cookie with the response header. It is for this reason that the code that contains the call to setcookie() is placed in the <head></head> section of the HTML document.

 Here is the code to create two cookies named ‘band’ and ‘food’, respectively. The cookie ‘band’ will expire in one hour while ‘food’ will expire in 30 days. Save this code in a script named cookies.php and execute it.

 [bookmark: _Toc387669769][bookmark: _Toc387670127]Cookies.php

 <?php

 setcookie("band" , "Journey", time()+ 3600); // Expires in One Hour

 setcookie("food" , "pasta", time()+ (60 * 60 * 24 * 30)); // 30 Day cookie

 ?>

 We now have two cookies in the browser client and retrieving cookies is as easy as creating them. You use the superglobal associative array $_COOKIES which contains a list of all the cookie values sent by the browser in the current request. You provide the name parameter as a key to obtain the value parameter of the cookie.

 Input this code in the PHP script cookies2.php and run the script.

 [bookmark: _Toc387669770][bookmark: _Toc387670128]Cookies2.php

 <?php

 $band = $_COOKIE['band'];

 $food = $_COOKIE['food'];

 print("Band: " . $band);

 print("
Food: " . $food);

 ?>

 The display should look like this:.

 Band: Journey
 Food: pasta

 Understand that a newly created cookie cannot be accessed via $_COOKIES until the next browser request is made. This is because the server first sends the cookie to the browser and at this point, the browser cannot send the cookie back to the server until the browser makes its next request.

 Now, to delete or “expire” a cookie, you call setcookie() with the name of the cookie you want to delete as your first argument, an empty string (or any value) as your second argument, and a date and time in the past as your third argument. For example:

 setcookie("food" , "", (time()-1));

 Need we explain why setting a time in the past deletes or expires our cookie? Now, add the previous call to setcookie() to the code in the script cookies2.php. Run the script again and you should get the same display as in figure 10-16. But cookies2.php—because of our call to setcookie() with a previous timestamp as one argument—has no deleted the cookie ‘food.’ To verify that this cookie has been deleted, input the following code and save it as cookies3.php.

 [bookmark: _Toc387669771][bookmark: _Toc387670129]Cookies3.php

 <php

 $band = $_COOKIE['band'];

 print("Band: " . $band);

 if(isset($_COOKIE['food']))

 {

 print("
Food cookie set");

 }

 else

 {

 print("
No Food cookie found.");

 }

 ?>

 The isset() function returns TRUE if a variable is not set to NULL. Otherwise, it returns FALSE.

 When you run cookies3.php, you will get the following result in the browser.

 Band: Journey
 No food cookie found.

 The cookie ‘food’ has been deleted or expired.

 [bookmark: _Toc387669772][bookmark: _Toc387670130][bookmark: _Toc387671808][bookmark: _Toc387672150]Complete Code Listing

 Cookies.php

 <?php

 setcookie("band" , "Journey", time()+ 36000); // Expires in One Hour

 setcookie("food" , "pasta", time()+ (60 * 60 * 24 * 30)); // 30 Day cookie

 ?>

 Cookies2.php

 <?php

 $band = $_COOKIE['band'];

 $food = $_COOKIE['food'];

 print("Band: " . $band);

 print("
Food: " . $food);

 setcookie("food" , "", (time()-1));

 ?>

 Cookies3.php

 <?php

 $band = $_COOKIE['band'];

 print("Band: " . $band);

 if(isset($_COOKIE['food']))

 {

 print("
Food cookie set");

 }

 else

 {

 print("
No food cookie found.");

 }

 ?>

 [bookmark: _Toc387669773][bookmark: _Toc387670131][bookmark: _Toc387671809][bookmark: _Toc387672151]Questions for Review

 1. What is a cookie?

 a. A file.

 b. A function.

 c. A command.

 d. None of the above.

 2. What function is used to create a cookie?

 a. setcookie()

 b. startcookie()

 c. createcookie()

 d. None of the above.

 [bookmark: _Toc387669774][bookmark: _Toc387670132][bookmark: _Toc387671810][bookmark: _Toc387672152]Chapter 10 Lab Exercise

 1. Ensure that your MAMP or WAMP server stack is downloaded, installed, and running.

 2. Set up an HTML document and embed an opening and closing PHP tag in the <body> section of the document. Save that document in your www folder (Windows) or htdocs folder (Mac) as described.

 3. Create a short form in which the user enters a user name. Store the user name in a session variable.

 4. Create a second page which reads the user name from the session variable. Output a greeting to the user.

 5. After outputting the greeting, destroy the session and store the username in a cookie called username. Make the cookie expire in 30 minutes.

 6. Create a new page and retrieve the cookie. Display the current date at the top of the page using the date() function.

 7. Place the string “You have reached the end of PHP for Beginners.” in the variable $message.

 8. Output the number of characters in the string.

 9. Using a string function and whatever code is necessary, replace all of the vowels with an X and output the string again.

 10. Using a string function, convert the string into an array and output each element of the array using a loop. (Don’t use print_r.)

[bookmark: _Toc387671811][bookmark: _Toc387672153]Chapter 10 Lab Solutions

 Lab.php:

 <!DOCTYPE html>

 <head>

 <title>Lab 10</title>

 <?php

 $user;

 if(isset($_REQUEST['user']))

 {

 $user = $_REQUEST['user'];

 session_start();

 $_SESSION['username'] = $user;

 print("Session saved");

 }

 ?>

 </head>

 <body>

 <form action="lab.php" method="post">

 <label for="user">Username:</label><input type="text" id="user" name="user" />

<input type="submit" value="Save Session" />

Go to page 2

 </form>

 </body>

 </html>

 Lab2.php

 <?php

 session_start();

 $username = $_SESSION['username'];

 print("Hello " . $username);

 session_destroy();

 setcookie("username", $username, time() + 1800);

 print("
Go to page 3");

 ?>

 Lab3.php

 <?php

 print(date("D F d, Y h:i:s"));

 $username = $_COOKIE["username"];

 print("
From Cookie: " . $username);

 $message = "You have reached the end of PHP for Beginners.";

 print("
");

 print("String length: " . strlen($message));

 print("
");

 print("
");

 $vowels = array("a", "e", "i", "o", "u", "A", "E", "I", "O", "U");

 $newMessage = str_replace($vowels, "X", $message);

 print($newMessage);

 print("
");

 print("
");

 $messageArray = explode(" ", $message);

 for($i=0;$i<count($messageArray);$i++)

 {

 print($messageArray[$i] . "
");

 }

 ?>

 [image:]

 Figure 10.14: Screen output of script Lab.php. ‘Alison’ has been entered in the username field.

 [image:]

 Figure 10.15: Screen output of script Lab2.php

 [image:]

 Figure 10.16: Screen output of script Lab3.php

 [bookmark: _Toc387669775][bookmark: _Toc387670133][bookmark: _Toc387671812][bookmark: _Toc387672154]Chapter 10 Summary

 In this chapter you learned how to use PHP’s date() and time() functions to access and manipulate date and time information. You have also been introduced to different ways of manipulating strings with PHP as well as two unique behaviors of PHP strings: the use of single and double quotes and the heredoc notation.

 We have explored the use of sessions and cookies to maintain state between browser requests to the server.

 As we close this last chapter, we salute and commend you for having persevered through the ten long chapters of this introductory book on PHP programming. You should be very proud of yourself—good job! Now, let me offer you a piece of advice: I’m sure you’re familar with the saying “use it or lose it”, right? Well, that saying applies to your programming knowledge, too! Make sure you actively use your knowledge—practice and review key concepts now and again to keep everything fresh in your mind. Now get started programming your webpages with what you have learned! Good luck!

 [bookmark: _Toc387669778][bookmark: _Toc387670136][bookmark: _Toc387671815][bookmark: _Toc387672157][bookmark: _Toc387669776][bookmark: _Toc387670134][bookmark: _Toc387671813][bookmark: _Toc387672155]Answer Key:

 [bookmark: _Toc387669777][bookmark: _Toc387670135][bookmark: _Toc387671814][bookmark: _Toc387672156]LearnToProgram.tv PHP and MySQL for Beginners

 Chapter 1: Your First PHP Script

 1. What does PHP stand for?

 Answer: b. Pre Hypertext Processor.

 2. What does A in WAMP stand for?

 Answer: a. Apache.

 3. What address do you use to check the homepage generated by the Apache server for Windows?

 Answer: a. http://localhost

 4. What is the correct opening PHP tag?

 Answer: d. <?php

 5. Which command can display a formatted string output?

 Answer: d. printf(" ");

 Chapter 2: Variables

 1. What are variables?

 Answer: a. Variables are containers for strings and numbers.

 2. What are the operations of the common arithmetic operators?

 Answer: b. Addition, subtraction, multiplication, division.

 3. What is the correct syntax for the combined operation concatenate then return in PHP?

 Answer: c. .=

 4. Instead of writing a routine that adds 1 to a certain variable, what operator can be used instead?

 Answer: a. increment

 Chapter 3: Arrays

 1. What are arrays?

 Answer: b. Arrays are containers for multiple variables.

 2. If a member of an array is to be assigned as the fourth member, what should the proper syntax be?

 Answer: c. $arrayName[4]=data;

 3. In the example,

 $example = array("Cooper" => 25000, "Oswald" => 23500);

 which is/are the key/s?

 Answer: a. Cooper, Oswald

 4. What is the simplest explanation for multidimensional arrays?

 Answer: b. They are arrays within an array.

 5. What is the difference between a simple array and a superglobal array?

 Answer: b. Superglobal arrays come from the user inputs from the web server, URLs, cookies, and HTML files, while simple arrays are declared by the programmer.

 Chapter 4: Control Structures - Branching

 1. What are conditionals?

 Answer: d. Statements that evaluate an expression condition to be true or false and perform the corresponding action associated with either true or false value.

 2. What conditional operator does the condition “<=” depict?

 Answer: d. Less than or equal to.

 3. What is an example of a complex conditional?

 Answer: d. A series of if-else-if statements.

 4. What are switch-case-break conditionals best defined as?

 Answer: c. A conditional that has many cases.

 5. Is switch-case-break case sensitive?

 Answer: d. By default, yes, but it can be customized by adding multiple cases that would remove the case sensitivity.

 6. What are ternary operators?

 Answer: a. A one line if-else statement associated with a variable.

 7. What do the symbols (?) and (:) in ternary statements mean, respectively?

 Answer: a. If and else.

 Chapter 5: Control Structures - Looping

 1. What are loops?

 Answer: c. Commands that repeat the process of a code segment depending on the condition set in the program.

 2. What is the main difference between while-loops and do-while-loops?

 Answer: c. Do-while-loops iterate at least once even if the condition is initially set to FALSE; while-loops ignore the loop if the initial value is FALSE.

 3. What is a for-loop?

 Answer: c. For-loops are a compact type of loops that contain the logic and parameters of the loop all in one line.

 4. Which loop would be wise to use when dealing with complex arrays?

 Answer: d. foreach-loop

 Chapter 6: Custom PHP Functions

 1. What are functions?

 Answer: a. Blocks of related code that are stored under a specific keyword that may be called and repeatedly used.

 2. What are arguments?

 Answer: a. Values or strings that are passed into a function.

 3. How does the return statement work?

 Answer: a. Return ends the execution of a function and returns a value to the caller of the function.

 4. Which function will produce an error and terminate the script if the filename passed to that function as an argument cannot be found?

 Answer: c. require

 Chapter 7: Server File I/O

 1. What does File I/O mean?

 Answer: a. File Input and Output.

 2. Which is the fastest method of retrieving the contents of text files in the server?

 Answer: a. file_get_contents

 3. What mode does ‘a’ stand for?

 Answer: b. Append.

 4. What is usually required to append and delete files in the server?

 Answer: b. Permission from the server.

 5. What does CSV mean?

 Answer: d. Comma-Separated Values.

 Chapter 8: Sending Email with PHP

 1. Which corresponds to the recipient of the email in PHP?

 Answer: a. $to

 2. What does the mail() function do?

 Answer: a. It sends and receives email using PHP through the server.

 3. What does SMTP mean?

 Answer: a. Simple Mail Transfer Protocol.

 4. What is an HTML e-mail?

 Answer: a. A type of email that has HTML tags embedded in it.

 5. What does the header MIME Version do?

 Answer: a. This heading indicates that the email contains characters other than ASCII text characters.

 6. What is the use of the content type text/HTML header?

 Answer: d. It defines the character encoding the HTML email will use.

 Chapter 9.1 Setting up the Database

 1. What should we type for getting a list of commands in the MySQL command prompt?

 Answer: a. mysql>Help

 2. In order to make sure that each entry in a column will be unique, what do we use?

 Answer: c. Primary Key

 Chapter 9.2 Retrieving a Query from the Database

 1. Which class serves as a blueprint to a connection object which enables php scripts to access a MySQL database?

 Answer: a. mysql_connect.

 2. Which command indicates that if mysql_connect does not work, it will go ahead and provide a MySQL error that occcurred?

 Answer: b. or die

 Chapter 9.3 Storing Information in the Database

 1. What is the data type of the information that the post method uses?

 Answer: a. array.

 2. Which method of the connection object is used to close itself?

 Answer: c. close

 Chapter 9.4 Deleting and Updating Database Records

 1. Which symbol is used in a query string?

 Answer: d. ?

 2. What is $_REQUEST[]?

 Answer: d. A super global array

 Chapter 9.5 Complex Queries

 1. Which operation is used to get data from more than one table at the same time?

 Answer: b. informal join

 Chapter 10.1 Date Object

 1. How many arguments does the date() function have?

 Answer: b. Two

 2. Which letter is used to obtain the full textual display of the month?

 Answer: a. F

 Chapter 10.2 Strings in PHP

 1. The symbol that is used to display heredoc is:

 Answer: a. <<<

 2. What function converts a string into an array?

 Answer: b. str_split()

 Chapter 10.3 Sessions

 1. What function is used to begin each session?

 Answer: a. session_start()

 2. What function is used when we no longer want a session?

 Answer: c. session_destroy()

 Chapter 10.4 Cookies

 1. What is a cookie?

 Answer: a. A file

 2. What function is used to create a cookie?

 Answer: a. setcookie()

 Appendix

 	 Terms

 	 Definitions and Descriptions

 	 api

 	 This is an acronym for application programming interface. It is a set of rules, routines, protocols and function calls that define how software components and packages can interact with each other.

 	 argument

 	 This is a value or variable that is passed to a function.

 	 array

 	 This is one of the eight data types of PHP. Arrays can store more than one value of any data type. Arrays can be simple, associative or multi-dimensional.

 	 associative array

 	 This is one of the two types of arrays in PHP that assigns a unique key value to each array member or element. It uses named keys to identify and distinguish its members or elements as opposed to the numeric keys (indexes) used for simple arrays.

 	 boolean

 	 This is one of the eight data types of PHP. It has only two Boolean values – TRUE and FALSE.

 	 branching control structure

 	 See ‘control structure’

 	 break

 	 This is a PHP keyword used to terminate the execution of either a branching or looping control structure.

 	 browser

 	 This is also known as a web browser which is a program with a graphical user interface (GUI) that retrieves, presents, and traverses information resources on the world wide web.

 	 class

 	 This is the blueprint for an object. A class specifies in detail what an object’s program code and data are. Objects are created (instantiated) from classes.

 	 client

 	 A client is a computer program that runs on a personal computer or workstation and accesses a server (for data and computer resources) to perform its tasks. For example, an email client is a computer program that sends and receives email.

 	 code block

 	 A group of contiguous lines of code usually but not always delimited by curly braces ‘{}’.

 	 cookies

 	 These are files no larger than 4kb which are left by the server on the client’s computer. Along with sessions, cookies are used in “preserving an application’s state between browser requests.”

 	 column

 	 A table in a database consists of several columns or fields which store various types of data.

 	 concatenation

 	 The process of joining several distinct things or objects into one whole unit.

 	 comparison operator

 	 This is an operator that compares two operands in a conditional expression. Examples are the identical operators “===”, and the less than operator, “<”.

 	 conditional expression

 	 This is an expression that evaluates to either of the Boolean values true or false.

 	 conditional statement

 	 This is a line of programming code which abides by a strict syntax and grammar rule. It contains a conditional expression and is the beginning statement of a branching control structure.

 	 control structure

 	 In programming, this is a language construct or the specific way lines of code are written and arranged which allows the flow of execution to be altered. There are basically two types of programming control structures – branching and looping (iteration).

 	 CRUD

 	 This is an acronym for Create, Retrieve, Update, and Delete. A CRUD application creates, retrieves, updates and deletes data from a database.

 	 csv file

 	 This is a comma-separated value (csv) text file consisting of values (numeric and text) separated by commas.

 	 database

 	 This is an organized collection of related data. It is primarily made up of tables. It is in these tables that data is stored.

 	 do-while

 	 This is one of the four looping control structures of PHP. The other three are: while-loop, for-loop and foreach-loop.

 	 dot operator

 	 The dot operator ‘.’ is PHP’s concatenation operator. For example, the concatenation operator between the two strings “Hello” . “There” will yield the string “HelloThere”.

 	 email client

 	 This is the program a user (an individual) uses to send or receive emails such as Microsoft Outlook. Users who use Gmail use a webmail client.

 	 esmtp

 	 This is an acronym for Extended Simple Mail Transfer Protocol which is a slightly updated version of the SMTP protocol. ESTMP allows the transmission of multimedia through email.

 	 expression

 	 This is any valid combination of variables, constants, literal values, operators, objects and even functions that can be evaluated to produce a value.

 	 field

 	 In a database, a field is another term for a column. Sometimes, a field refers to a specific row’s column.

 	 file

 	 This is a collective and generic term for data that is stored on a computer whether that data is in the form of text, binary, pictures, video, sound, webpages, etc. A file is assigned a unique filename to identify and distinguish it from other files

 	 file handle

 	 This is the return value of the fopen() function and is the primary means a PHP script accesses a server file. For every file a script accesses, a file handle is assigned. File handles are of the PHP data type resource.

 	 filename

 	 A file on a computer is given a unique filename to identify it. The filename consists of a name of a certain number of characters (in Windows the filename has a maximum of 255 characters) optionally followed by a dot a character extension. The character extension usually identifies the type of file. For example, the extension “avi” indicates a video file, “mp3” indicates a sound file, etc.

 	 file i/o

 	 This means file input-output or the creation and retrieval of files on a computer. In PHP, file i/o concerns only server files as PHP is forbidden from performing file i/o (except for the case of cookies) on a client’s computer.

 	 floating-point

 	 This is one of the eight data types of PHP. It represents numeric values with decimal digits.

 	 foreach-loop

 	 This is one of the four looping control structures of PHP. The other three are: while-loop, do-while-loop, for-loop.

 	 for-loop

 	 This is one of the four looping control structures of PHP. The other three are: while-loop, do-while-loop and the foreach-loop.

 	 function

 	 This is a self-contained block of program statements, with well-defined boundaries, that performs a specific task.

 	 here document

 	 In computer science, this is a file literal or input stream literal. It is a section of source code file that is treated as if it were a separate file.

 	 heredoc

 	 This is a block of code, no matter how large, that can be treated as a string.

 	 if-else/if-elseif statement

 	 This is one of three of PHP’s conditional statements that are used to create branching control structures. The other two are the if-statement and the switch-statement.

 	 if-statement

 	 This is one of three of PHP’s conditional statements that are used to create branching control structures. The other two are the if-else/if-elseif-statement and the switch-statement.

 	 imap

 	 This means Internet Mail Access Protocol. This is the protocol used by an incoming mail server that stores incoming and outgoing messages on the server.

 	 incoming mail server

 	 This processes all received emails and implements either POP3, Post Office Protocol, version 3, or IMAP, Internet Message Access Protocol. POP3 incoming servers store sent and received messages on the client’s hard drive. This forces a user to access and process his emails from only one device or locations. However, IMAP incoming servers store messages on servers thus allowing users to access their emails from any location or any device.

 	 indexed array

 	 This is one of the two types of arrays in PHP that use numeric indexing to identify and distinguish its members or elements.

 	 integer

 	 This is one of the eight data types of PHP. It is a whole number whose range of values depends on the hardware.

 	 ip address

 	 This is a unique number that is assigned to every computer that is connected to the internet. IP means “internet protocol”.

 	 join

 	 In a database, this is another term for relationship.

 	 key

 	 In a database, this is a column or columns on which an index is constructed to allow rapid and/or sorted access to a table’s data.

 	 keyword

 	 This is a word that is reserved by a programming language because it has a special meaning in the grammar and syntax rules of the language. Programmer’s cannot use keywords to name their variables or for any other purpose. Examples are: ‘break’, ‘else’, ‘if, ‘function’ and many more.

 	 Linux

 	 This is an open source (free) cross-platform operating system based on UNIX.

 	 literal value

 	 This is an expression that consists of only one operand and no operators. It is a single scalar value expressed by its actual string value (i.e. not referenced by a variable). For example, 1, 1.414 and "string" are literal values. Literal values as expressions evaluate to themselves

 	 logical operator

 	 This combines conditional expressions to produce a boolean result of either TRUE or FALSE. For example, $age < 21.

 	 looping control structure

 	 See ‘control structure’.

 	 mail server

 	 This is a type of server that handles the sending and receiving of emails. It may run on its own dedicated hardware or share hardware resources with other server programs. It runs automatically during normal operations without any manual intervention. There are two types of mail servers – outgoing and incoming mail servers.

 	 mode

 	 A mode specifically identifies a type of file i/o operation. Some file i/o functions require a mode as one of their arguments. Modes are identified by either a character and or a plus sign, ‘+’. For example, ‘r’ means ‘read access only’ while ‘r+’ means ‘read and write access’.

 	 multi-dimensional array

 	 This is an array whose elements or members are arrays. It is one main array containing several arrays called “sub-arrays”.

 	 mysql

 	 This is a popular, open source, relational database management system (RDBMS) that supports multiple administrative tools, programs and libraries, and application programming interfaces. As of March, 2014, it is the world's second most widely used open-source (RDBMS).

 	 null

 	 This is one of the eight data types of PHP. Null indicates that a variable has no valid value whatsoever stored in it.

 	 object

 	 This is a programming construct consisting of program code and program data bundled up as one isolated package with clear boundaries and definite rules on how to access that object’s program code and data.

 	 or die()

 	 This is a PHP language construct equivalent to exit.

 	 open source software

 	 This is computer software with its source code made available and whose license states that the copyright holder provides the rights to study, change and distribute the software to anyone and for any purpose.

 	 operator

 	 This is a symbol that specifies a particular programming action to be performed. This action usually results in a new value. There are ten groups of PHP operators - arithmetic, array, assignment, bitwise, comparison, error control, execution, logical, string, and incrementing/decrementing.

 	 operand

 	 This is what receives the action of an operator. Most of the time, an operand is a variable but it could also be a literal, an object, a function or anything that an operator can validly perform its action on.

 	 outgoing mail server

 	 This type of server handles all sent emails and implements SMTP – Simple Mail Transfer Protocol.

 	 parameter

 	 This is a variable, declared in a function’s definition that accepts the values of the arguments passed to the function.

 	 PEAR

 	 This is an acronym for PHP Extension and Application Repository. It is a large collection of free, high-quality, source code packages that can be downloaded and used in any PHP application.

 	 pop3

 	 This means Post Office Protocol version 3. This is the protocol used by an incoming mail server that stores sent and received messages on the client’s hard drives.

 	 post

 	 This method passes the information as an array instead of creating a query string which appears in the URL.

 	 PHP

 	 This is a recursive abbreviation where the first letter stands for the abbreviation itself and it means “PHP: Hypertext Processor.

 	 PHPMyAdmin

 	 This is a free and open source tool written in PHP and run from a web browser. It allows the user to create, modify or delete MySQL databases as well as any of the tables of the database or rows and fields of any table. PHPMyAdmin executes SQL statements on the database as well as manages users and permissions.

 	 primary key

 	 This is a column or field or several columns or fields whose values make sure that each row of a table will be unique.

 	 query string

 	 It is the part of a URL that contains data to be passed to web applications.

 	 record

 	 In a database, this is another term for a row.

 	 relationship

 	 In a database, a relationship is a link between two tables.

 	 resource

 	 This is one of the eight data types of PHP.

 	 return value

 	 This is an optional value returned by a function to its caller.

 	 row

 	 In a database, this is a set of related data in a table.

 	 scope

 	 This is an important concept in programming and refers to the visibility or accessibility of a variable in a program. Specifically, it refers to the portions of code in a program where the variable can be accessed. PHP provides global and local scope.

 	 server

 	 This is a system (software and suitable computer hardware) that is designed to process requests and deliver data to other computers (clients) over a local network or the Internet.

 	 session

 	 This is a temporary file on the server where you can store data. The client browser stores data in a session to “maintain state between browser requests” or in more specific terms “preserving an application’s state between browser requests.”

 	 SID

 	 This is an acronym for session id. The SID is generated by the server and is used to identify and protect a session.

 	 SQL

 	 This means Structured Query Language (often pronounced as “see-qwell”). It is a programming language used to search, sort, add and extract data in relational databases.

 	 simple array

 	 See indexed arrays.

 	 smtp

 	 This is an acronym for Simple Mail Transfer Protocol. This is the protocol used when email is delivered from an email client, such as Outlook Express, to an email server or when email is delivered from one email server to another. SMTP uses port 25. Nowadays, though, most mail servers use ESMTP, an updated version of SMTP.

 	 state

 	 This word is used in the context of the phrase “maintaining state” or in more specific terms “preserving an application’s state between browser requests.” When a browser requests a web page from a server, neither the browser nor the server has any memory of the browser’s previous requests. Values of any variables in a web page are lost when a new page is loaded. Preserving those values is what is meant by “maintaining state”.

 	 string

 	 This is one of the eight data types of PHP. It is a sequence of characters of arbitrary length.

 	 sub-array

 	 This is an array within a multi-dimensional array.

 	 superglobal

 	 This is a built-in (pre-defined) associative array variable in PHP that is automatically available to all PHP code especially within functions (global scope). Superglobals represent data coming from URLs, HTML forms, cookies, sessions, and the web server itself.

 	 switch-statement

 	 This is one of three of PHP’s conditional statements that are used to create branching control structures. The other two are the if-statement and the if-else/if-elseif-statement.

 	 table

 	 In a database, this is a collection of closely related data or columns (or fields).

 	 ternary operator

 	 This operator works on three operands and is a compact form of the if-else statement.

 	 timestamp

 	 This is the number of seconds between midnight of January 1, 1970 and the current date and time. PHP internally stores the timestamp as a 10-digit integer.

 	 URL

 	 This means Universal Resource Locator. It is a specially formatted string of text used by web browsers and other network software. It identifies a network resource on the Internet. Network resources are files that can be plain Web pages, other text documents, graphics, or programs. An example of a URL is http://www.website.com/myfinename.

 	 value

 	 In a table in a MySQL database, a value is the data in a given row and column.

 	 variable

 	 This is a memory unit allocated to store a value which can be any of the eight PHP data types, namely: integers, floating-point numbers, strings, booleans, arrays, objects, resources (or handles) and null.

 	 web browser

 	 See browser

 	

 	 This is one of the eight data types of PHP.

 	 while-loop

 	 This is one of the four looping control structures of PHP. The other three are: do-while-loop, for-loop, foreach-loop.

 [image: Development Club Print Ad.pdf]

 images/00011.jpeg

images/00010.jpeg
ver Online

images/00013.jpeg

images/00012.jpeg
Server
i

Tools

P -
Bor e ki
PO o)
P
Bl i e
i e
Bar Mo ke
F

B o
e S
oo

Homame
A
e
Fe
Fe
Fee
ey
Pt
he
peed

DEY
Lo

images/00015.jpeg
& Locainost
) phpMyAdrmin
B s divectory

St Al Senvices
Stop Al Services
Restart Al Services

e

images/00014.jpeg
Q.+ o+ oo+ g e 0 e —

images/00031.jpeg
First Name: Adam

Age:21
Height: 165.1

images/00030.jpeg
frisbles In PHP -

€ @ tocaostvaratiephy c|B-cwe Al ¥ A
I3 Bookmarks

Adam
21

images/00033.jpeg
= l=l@

‘Addition Operation n PHP [+l

€& tocahost acc0pertn prp e/ e Pl & B
I3 Bookmarks
110 +52=162

images/00032.jpeg
[E=SSToT
Varablssnd ConcatenstioninPHD |

LT B P4 M
B socimans|

Adm

2

Adamis 21 years ol

The tax rate in Guacamole dand is 0,12
The final vaoe of (25°6272+42.51101°2) s 2145277777778

images/00035.jpeg
(€@ ocsbostioopes c|[B-cwe Pl & B

110 %52 = 5720
110/52=2.1153846153846

Tncrementing x = 111
Decrementing y = 51
Modulus of x and y = 9

13
20

210
8333333333333

Hello this is a test for concatenation and the..
‘Conneet this next phrase and place it on the next line

3 Bookmarks

images/00034.jpeg
= (=] E]
Operators in PHP [+

€ @ ocahostoperivey e/ e Pl & B
I3 Bookmarks

110+52=162

images/00037.jpeg
—

[6ot Cote livipman iow Bt ook i
B.lDnocw

Ll ST

s |

[T ———————
O sl now!

> Camraen s

5 ek Compesion

Bttt

images/00036.jpeg
/ [Chapter2Labbrercise x __
= € [D localhost/Chapter%202%20Lab%20Exercisephy | =

y*x=3250

A=31{B=§9/C=192(D=324
4632

images/00028.jpeg
Tenpletes

@ Catesant
T
|di5anee =
B

|Ees

| S

| Srma

|2 2

[E==RmrT|

images/00027.jpeg
ActiveState & Komodo News

S ———————"

New Releass! Komodo IDE
o=y
sl ot

images/00029.jpeg
[EET=X=)

Varsbies InPHP e

€ @ localhost/verisbles ohp.

Adam
21

images/00020.jpeg
© tocatosthelom

WampServer

Versn 2.2 Version Francaise

Server Configuration

e T

e n
2 Bockmarks

images/00022.jpeg

images/00021.jpeg
€ 8 omouionn

Hi There!

images/00024.jpeg
[<nemi>

2 cneass

3| ceitieoneliore/eanies

o </neass

o) <boay>

' <hiscstrong>This 1s my first BHE
docunent</ni></br>This 18 my second PHE
statenant</odys

fiporteny

images/00023.jpeg
€ [localhost/firs hp.

This is my first PHP document

This i my second PH statement

images/00026.jpeg
ST Irrrr—

€ 5 C D localhostChaptertab ohp

Adam Caper

Tlike basketball, cooking, computer games, playing the |
guitar, and dancing.

Tom 21 years old.

My bithdayis 2 /71992

images/00025.jpeg
[Coupe
€ & cshorcupishe

Thisis echoed out
‘This s also echoed out

This e was ciplayed using it

Thi e was diplayed usin riot wios the
Today i theyear 2013

Five dvided by two s 2500000

images/00017.jpeg
€ 2 D o [©We [locabostiiorimi][0~ Serch

*
» Hi There!

images/00016.jpeg

images/00019.jpeg
J PhpyAdmn
B o cicectory
& apache

Start All Sevices
Stop All Sevices
Restart Al Senvices

Put Offine

images/00018.jpeg
| € 2 C B locahost/eiio i

Hi There!

images/00051.jpeg

images/00050.jpeg
€ & locamostm

TN P e
] oo |l | s iy

images/00053.jpeg
= sampleFormhtmi* C:wamp\www) - Komodo Edt 7.
e 3t Gote Bovasion Yon Biiea Tooh .
G402 0 BRI UWEE

B
L s
2 M
e
ey e

images/00052.jpeg
e b o
G A00 - ve BT LSS
et

P

images/00055.jpeg
<titieSemple Formc/citier
</neass
<woar>
<form sctione"auperGiobals php” method-rrequestty
<carcnisHelio, this s our examplec/ni></sd>
<rees
<esplease Encer Your Firat Name:</td>
<odscsnput namestuseriamer /></td>
<z

t naceko

images/00054.jpeg
B oy e
= sampleForntmi® Clwamp\mew) - Komodo EGt 71

Bde Edt Code Nowgaton Veew Project Iook Help.
€2-DUEHE 0D 2 - 0 DED - WwTE

= Sunige | sampltormbtm

28 foos,
3B hensr
3] Simesumte romc/tisies
Sb Cresa
) <toses

7E] cfom actionsrsuperSlobals.papt merhodstraquescts
o <anies

58 wn
0 <ca>auismello, this 1s cur examplec/nire/sa>
n <exs
20 o

i i—

Ready Lt o ;| tmacao L
! L &

images/00057.jpeg
S samplefornhm Ciwamplwwe) -Komodo E6t74 — — leolie) |
Bie £ Code Novgoven ow Brjec ook ey
€ DU B dLD - 9O PED=LEE

2 o>
SE e

4] caciesamie Fome/tisies
S| ocimenss

SE eay>

7E] <tom accion=rsupersion |
oE ccables

SH an
10 <c>enistielio, this s our examplec/ni></cd> 7

u e |

2H

13 <ca>Please Enter Your First Name:</td> |

1 <ea>cinpus name=ruseriane® /></sd>

1 <rees

Y <crplease Bacer Your Age: </cd> I
i <tdo<inpat namesmuserAgen /></td>

20 <o
2 cedocinput typesmebRAL® value"Submitt /></td>
22 </ee> d

s &
| B0AT

images/00056.jpeg
€2 -DUBE LD D O PED= WS
S tPage]) smmpleformbtm* = |
FRSTT
S cnens>
4] <iriesaple fome/ricies
Sl messs
Plopp sy
7E] <fomm actionnsupesGiobals php methoderrequescns
| 2B caies
o8 e
1 cearentoRello, this i our examplec/hine/td>
n <
| 128 <>
i <ceaserease Eaver Your First Namese/cd>
b eascsnpur namesrasestanen /></sd>
| 1 <
| o0 o
i <ceapiense facer Your Age: </za>
1 <S> cimpue mamamrusezAger /5</ca>
1 <o g
G s

images/00059.jpeg
- SompleFom . GET
€ @ ocahontsmpicrormset il c/B-o

Hello, this is our example

Please Enter Your First Name:
Please Enter Your Age
[submt |

images/00058.jpeg
) Somple Form
€ @ oot sampierorm i ¢/ B-wrgnp| 3 A B~

Hello, this is our example

Please Enter Yous First Name:
Please Enter Your Age:

Submit

images/00049.jpeg
) Teams snd Members

€ boabos/mutsmenions o

Yarkees--(1) Rivera
1) Dickey
Red Sox--(1) Ortz

Red Sox--(3) Bucholz

images/00040.jpeg
e hcse bt Moo Lo .

LESEFECR SRR Rol I

: R ——

5o :

images/00042.jpeg
=8

D Cropterssimpleamy N\

€« = € [D localhost/simple_array.php ==

Joha lkes to eat Grapes
Lamy ikes to eat Mangoes.
Jane ks to eat Apples
Liy ikes to cat Berries

images/00041.jpeg
=

<toocTyee>
<nenl 1anganents
nesa>

<eicieschaprer 3: Simple Arzaye/sicies
</mencs

<oone
struse(o) = merries:
e —
Strusc(e) = vappiest
Serusc(s) = vGrapest;
»
</voays
P

L6 Cot0

Y)

images/00044.jpeg
[@asoaarernons x|

¢ 3 D o [©W [Fabomomi s][0

Johin Doe has a GPA of 3 and ook up Office Management
Robet Smith has 2 GPA of 3 and i a Certfed Operator.

‘Sam Rogers has a GPA of 3.5 and took up Ofice Management

Drei Adam has a GPA of 4 and has a degree i Electronics Engineerig.
Jim Brown has a GPA of 4 and has degree in nformation Technology.

s a R

images/00043.jpeg
| @ Chapter 3: Associative . *

€ > D o [OWe [lcshormocaie sys &) (B

Jobn Doe has an anmual salary of $30,000.
‘Robert Smith has an anmual salry of $28,000.
‘Sam Rogers has an anmual salary of $50,000.
Drei Adam has an anmmal saary of $120,000.
Jim Brown has an annua salary of $75,000.

images/00046.jpeg
Dy Grnrgon)]

images/00045.jpeg
[ees B2 Tt L Srmnong

images/00048.jpeg
Mutdimensonsi Arays

€ @ locathost/mutimers

Weapoas(3] - Avoce’s Blade:
Amors{1] : Megingiard

| Useables[s] Cured Water

| Key ltems{0] - Continental Guard Certifcate

Magic Tems[2] Lv1 10 Assumptio Scroll

images/00047.jpeg
[o oros

€ @ locathos mutidimensions.

‘Backpack Contens for Weapons: =
Knsnaya =
Exccutioner

Violet Fear
Atroce's Blade

Backpack Contents for Armors:
Lord Kaho's Homs
Megingjard

Steipni

Dragon Manteau

Ears of it

Backpack Contents for Useables:

Yagdrasil Berry
Berserk Potion b
Authoritative Badge
Speed Potion
Panacea

Cursed Water

Backpack Conteats for Key ltems:
Continental Guard Certificate

Ashes of Darkness
Dragon Tooth
Dragon Scale
Dragon Skin

Backpack Contents for Magic Items: I

Lol 10 Blessing Scroll
Lo 10 Increase AGI Scroll

images/00039.jpeg
S Sove HTMLS-Lhtmi s

)=« Local Ok ©) » wamp > e ~w/ﬂ! =

e L Name Datemadiies
sadOpecsonphy
Py — LissdOpertonrp
Py [a—
[lChapi2 b b
Clchptabo

e

fodes

3 Crptetanpre
o Dleoncstmstesiy
o) it documencphe

Window: e

Fierame. TEFTRTIRT
Sovesype (MFis

images/00038.jpeg
e

sewar i B s ¢

images/00071.jpeg
Enter Your Name:
Enter Your Age
Enter Curent Year Today:

submit. clear

images/00070.jpeg
J/ Dlocoborspeiobaspt x_

€ 5 C # [localhost/superGlobalsphp ==

Keithis 23 years old
Twwo years from now, Keith will be 23 years old.

images/00073.jpeg
fesr Of Bith Preciction 5 !

(&8 baahostyexcivnn pesicronm 77 € |[@- g £| 3 M

1) Bookmerks

Eoter You Name: Jim Brown
Enter You Age: £
Eoter the Current Year: 2013

(wma] [oar]

images/00072.jpeg
|EStEr—=)

€ @ locothost yesrOfEirth prediction hirm! c|B-cw: Pl & A

1) Bookmarks

images/00075.jpeg
D .

Eater First erson's Name:
Enter First Person's Age:
Enter Second Person's Name:
Enter Second Person's Age:
Enter the Current Year:

([etear]

images/00074.jpeg
=8

[e ecbosen, caiersve [

€ @ localhost bithesr_calcustorphp | B-cose Pl & A
B sookens

Jim Brovwn was approximately born n the year 1974,

images/00077.jpeg
2 it ocabostieYer,calcltonghp
€)@ oo bt cteiserpre 77 < C|[B- Gose £ & B

I3 Bookmarks|

‘Adam Waltz was approximately born i the year 1984,

‘Evan Swing was approximately born in the year 1985

images/00076.jpeg
€ @ locolhost/yeorOfBith_prediction himl

Enter First Person's Name: Adam Walz
Enter First Person's Age: 29

Enter Second Person's Name: £van Swing
Enter Second Person's Age: 25

Enter the Curent Year. 2013

=)

images/00079.jpeg
A Lnguges
Scommen
5 Mo Devlopment

[r——
ety Clmamplonn

images/00078.jpeg
= Stant Page - Komodo Edit 7.1 ol
B §68 Code iigaton ew Broect Toos Help

ke L] L] 90 BEE - wTE
Pt raton) coremeos | ST
Stuaninealt > sasons
2 Quekiine
5 Open Sample Project 5 Check Configuration
Contins umbes ofles shoving many o Checks e confguratonto el
heesrs o amos, Koot s e wating propery.
2 Recent Prjectsand s
P] Actons:
S -\iprOuaLocahA. tkomedeprict Smonhssse || [eyie. i
Recent s
[Clmmpmcondtonsiphy Thowrsgo | 5 NewPee
[E—— yotatny) M e
D Clmamplunsamplfombtmt 3 dys 390 o
D Clwamplvamisuperiobasonp 3oy a0 Rrre 4
e, S B :

Resdy

images/00060.jpeg
) SampleForm . GET

€ @ locathost/sampieformtet himi

Hello, this is our example

Please Enter You First Name:

Please Enter Your Age:
[“suomt

images/00062.jpeg

images/00061.jpeg
[T ——————

(€8 eahen ocsibsiasptvetime it -~ C MG 5| & &
[P

Jon i 40 s ol

images/00064.jpeg
lelo;
Jirrr N
€ 5 € # [ocahostsupeciobalsrostphp =

Fredis 20 years old

images/00063.jpeg
[sampleFom S POST %

.
€ 3 C # D lowhostamp m
Hello, this is our example

i

| Peas Entr Your Fist Name Fred
Plesse Eter Your Age: %

| [Submit]

images/00066.jpeg
Somple Form § REQUEST
€ = € fi [localhostsampleformi

Hello, this is our example

Please Enter Your First Name:
Please Eer Your Age

Submit]

images/00065.jpeg
Hello, this is our example

Please Enter Your First Name:
Plase Enter Your Age:

(s

images/00068.jpeg
€ 3 € [D localhost/superGiobaisRequest pho userName - randonduserAge =305 | &

Brandonis 30 years ot

images/00067.jpeg
€ CH

1 localhost

Hello, this is our example

Please Enter Your First Name: Brandon

Plase Enter Your Age: £l

images/00069.jpeg
£ SampleForm x l

€ & C fi [localhost/sampleformniml

Hello, this is our example

‘Please Enter Your First Name Keith
Plase Enter You Age: =
|)

images/00091.jpeg
1) locamostvoesi

ity % \
€« - C fi [localhost/votersElig

| Youare cighble to vote
|
\

images/00090.jpeg
[Ener User Information

| € » € # D loclhostotersrormtmi

Enter Your Age |18

Are youaciizen? ® Yes ©No

(submit) <23

images/00093.jpeg
/[ComplexConditional % _

€ & C f [localhost/conditionals_ifElse.php

You are not elighble to vote

images/00092.jpeg

images/00095.jpeg
= complesCondiionsls 2php" Cwamphwn) - Komodo Edt

e elEie)
i o i o Bt T 130
- DiHe OO o -BEY=wEE

= s

e

5l s

. i I .
Command Outpt | Notfcsions | Synss Checking St

Resdy Dt o ¢ Gl

images/00094.jpeg
NewFie T e
Catsgors Tepines
fErr—— Grcss =
@ Commen i oo
(3 M Development i [
Wy Tempiner Ees
> 0 Sampes ephioo
T i
s I

Dircton: Cwampwan

== R .

images/00097.jpeg
=@

ComplexCondiionss 2 L+ . i

&8 boahascompieconstions vy -+ ¢ ||@- oo £| & 4 B~

Your grade is Excellent!

images/00096.jpeg
T 3-cosc 2 4 A B

images/00099.jpeg
[E]
73 Comples Condtionss 2 + .

& & kesbostcemiecendscnss e -~ | B-cose £ & A B~
Your grade s Excellent

images/00098.jpeg
= SeompiesCondiionais 2.php (C\wampwuw) - Komodo Edit 7.1 . K S
i ot Goue oo oo Joun o8
€5 - DuHE LD D - 8- PET=WSE
| St) omplnConttinsn 2500 = |

T e nemss

26 oo
SH nesss
4 <citiexomplex Conditionals 2¢/citie>
5| s

)] T,

ngl ¢
2 ono(rYour grade 1a BEREECTIIN);
1)

eiaest (sgzade >= 30) -

r——nm [—————

19 Gos

images/00080.jpeg
i Cote nigtion oon Erync sl tsp
€9 - DUBB 400D - v PET=LIRE

= Stnpage | condtonsiphp® % | =
<rpocTeE et A

3
s <eiciesconatesonatac/eicies
6 e

e <rene

images/00082.jpeg
St tome Datemosbes

[—

[Eie——
sscitive aray

[ed Citven cocorshe

8 Compier Cchap2 b Brcsephe

More Cmpertabp.
fotdes Chaptabphe

G

Soesype [s oo g g

images/00081.jpeg
' conditionals phpr (C:wamp)www - Komedo Edt 7.1

[
Bt

How B
i B
Cose B
Recenty Closed Tobs~~ »
RecenEles .
Recen indons B
sme cos
s

Save s Othr B
Show Uniaved Changes
Reset

Swedl Cuishaes

Eit_Code Navgaon Yiew Bt Took Hep

9. 8@ PEE=WIE

onsise/cinies

]

images/00084.jpeg
o —

€ & oot condtionstprp

Youar eigbi tovot.

images/00083.jpeg
T r— 3l

CIR AR
3 Sockmurks

images/00086.jpeg
= Seve conditonas phel As..

B -3

—— e | Ooemoded e |Sex
Documents L stdOperstonshp
Recnt e N menaind

cie sy

amEm

Destop Clbtves, et
ot lchupter2 o barciesnp
Lol Cichaprtaspy

fodes n Lchuetanphe

rume. ST
Soe sty [P Pl ool i phm)

images/00085.jpeg
S conditonal php” Clwarplwww) - Komodo Edt71
E6t_Code limiguion Yiew ot Toch Holp

images/00088.jpeg
= votersformhim” (Cmamplwa) - Komodo 4t .1

B o8 Gove Hovgon iew proect Toch b
e NuHR sLB D 0@
= SimPage | voterrormbum | _ vtengnitysne |

el

SE <ooor>
SE] Ceomm actisnetvorersEligibiliny.phpn methoderposets
by ceasncer veur Agec/eas

2 eascinput samesvaszhost /5</td>

ul e

i | emons

22 L Snems

Command Ot | Notfcatons - SyiarChcking S

=3 3 o ; Bc

images/00087.jpeg

images/00089.jpeg
[') Enter UserInformation

| € 2 C i [locathost/votersformhtm!

Enter Your Age
| Are youacitzen? © Yes ©No

=

images/00198.jpeg
Retun Function xample 1 +

€ @ locathost reunany

The value of 2 squared i 4.
‘The value of the rerured number is 625.

images/00197.jpeg
Funcnson squsce svatse)

Cicresmasa punerson peampte 1e/sisies

images/00199.jpeg
Scenp = ((sxampes /514521
i e e 13 abeaniess 42 7

-

e
T " print (e vatue 1n cetas 13
cenaen stems)

images/00194.jpeg
Categories
O AlLangusges

3 Mozt Development

Dirctory: [Cuamplwn | [ol | | Remote. |

e] [ommtoton] [eocs | [0 |

images/00193.jpeg
€ = € [localhost/functionArgs,php

images/00196.jpeg
/[Retum Funcion Example x \

€ - € [[localhost/retumExamplel_internal phesy| =

‘The value of 2 squared s 4.

images/00195.jpeg
= - oIl

[Dog Age Clciator

coge Pl & 4 B

€ @ localhost/co

‘The dog's age in human years is 35.

images/00190.jpeg
Y/ 1 Function Cat A

€ > € [[localhost/functionCalls ph

|

images/00192.jpeg
Categores Templates
A Langusges W

2 Common et

23 Mela Development # Perlodule

My Templates 4 per Module (00
2 Semples

Cwen

Filegame: | functiondigs php.

Diectory: | Chuampwn

images/00191.jpeg
) Function Calls Updated %

€ - € ([localhost/functionCalis php

Hello! This s a grecting!

images/00187.jpeg
e £t Gote inigaten
€6 B

images/00186.jpeg
23y Templates
2 Sumples e Moduie
Swe A per Moduie (00

Flegame: _functions.php
Directoys | Cwamplomas

[pen | [openTempitegoider | | concel | [b

images/00189.jpeg
s

images/00188.jpeg
[——

ossames srcmsos $100)

eoeteamor Srcebas S0

e reners s

images/00183.jpeg
- omm

3 e =
e = =

images/00182.jpeg
- ok

JCicrimatmiinoe Rl

€ @ locmo ncuse c|B-cwe 4 & B

‘The following statemeat below is printed out using the include function.
‘This satement i calld from the file includeMe php using the include command.
‘This statement i called from the il includeMe php using the include command.
This sstement i called from the il includeMe php using the include command.
This statement i called from the il includeMe php using the include command.

images/00185.jpeg
Bl ot Con N e P Tt
b B

gt s e i,

T r——

images/00184.jpeg
€ oo oo

e v b et v e

cover.jpeg
PHP & MySQL

images/00181.jpeg
O & v roaroro £ - 8.6 & wcanen

T fllowing stement bl prised vt i th siode Socticn.
This stement i aled o th e ncdee hp sing the incode command.

images/00180.jpeg
ER—

images/00176.jpeg

images/00297.jpeg
3 @ & D wemphprevmanualjenhcionst spitste. X

L —

ste_split

Descption

images/00175.jpeg
(— =8

g ocalostchaptesLabbros st |

\o 3 [@ locamostichapesiabbiob 3ohe c|@-ae 2| # B
fh.n.,ﬂm.,. T 100

| [Aanul otesest Rt (1 Decimab| o1

[Term (1n months) [1

| [Eammings History

Month [Monthly Interest Earned [Current Balance,
[Mowi 1 bss 10083

[Month 2 o8t [10167

i Montn 3 oss [lo252

[Month + joss 10338

[Month 5 oss [10s.2¢

[Mouh6 bs7 fios 11

[Mouth 7 foss [1oss8

I Mo § oss 1066

[Month 9 loss o775

| [Month 10 foso 10865

[Mo 11 st o556

I Mouth 12 ost [t10.47

| [favesemcats frure vatoe at end of teem 047

images/00296.jpeg
€ > C | D wwwphpnetmanual/enrefstrings.php

Downloads | Documentation | GetInvolved Help

+ addstashes — Quote string with sashies

+ binzhex — Convert binary data nto hexadecimal representation

o chop — Aliasof rtrim

o chi— Return a specific character

o chunk_spiit —Splita stinginto smaller chunks

o convert_cyr_string — Convert from one Cyrillc character set to another

o convert_uudecode — Decode auuencoded string

+ convert_uuencode — Uuencode astring

- count Return information about charactersused in string,

+ c1c32 — Calculates the cre32 polynomial of astring

o cypt — One-way string hashing,

+ echo — Output one or more strings

o cxplode — Spiit astring by string

o fprintf — Write a formatted string to astream

o get_himl_transiation_table —Returns the transiation table used by
himispecialchars and htmlentities

o hebrev — Convert logical Hebrew text tovisual text

o hebrevc — Convert logical Hebrew text o visualtext with newline conversion

+ hexabin — Decodes a hexadecimally encoded binary string

+ htm_entity_decode — Convert all HTMIL entities to their applicable characters,

hars

images/00178.jpeg

images/00299.jpeg
My name s Mark
My name is Sname
Roses arc Red

Violets are Blue

Tim no fan of Heredocs
But I can teach you.

Array ([0] == M [1] ==a [2] = r [3] = k)
enutroF fo lechW

images/00177.jpeg
Ctegories

Templtes

) AllLangusges

3 Commen

3 Mt Develepment
Sy Templtes

5 3 Somples

Swe

L Luddte

L Mason

® Node

et

e Moduie

4 per Mo (00

Fissme: ndudetiephs

Diectory. | Clwamplwwn

] [Ceat | [omee- |

[i) [| [

images/00298.jpeg
SRR oabee

My name is Mark
My name s Sname
Roses are Red

Violets are Blue

T'm no fan of Heredocs
But I can teach you.

Armay ([0] =M [1] =>a [2] =1 [3] => k)

images/00172.jpeg
e

€ > [ocomoapisiabros !

Principal &0
Interest Rate in % 10
041667

-!:

images/00293.jpeg
LR8O watany

Tue April 15,2014 09:22:57

1397596977

30 days from right now: 1400188977

30 days from right now: Thu May 15, 2014 09:22:57
18 Hours from now: Wed April 16, 2014 03:22:57

images/00171.jpeg
1 Chapers o slution

il
]
EE“

images/00292.jpeg
Tue April 15, 2014 0¢
1397596901

30 days from right now: 1400185901
30 days from right now: Thu May 15, 2014 09:21:41

21:41

images/00174.jpeg
hapter 3 Lab BeciseSlution

€ P [@ echoschpestaron 3nm 7 v C

Princpl 00
Intres Ratein %6 10

T i

images/00295.jpeg
SRS 0 locen

My name is Mark
My name is Sname
Roses are Red
Violets are Blue
T'mno fan of Heredocs
But I can teach you.

images/00173.jpeg
(E— =|@
ttp://localnost/chapterSLabProb 3 php | %
[2 [warmomesiironii - c|[B-cme 2| # B>
[Principal Amovat [60
|Annual Interest Rate (In Decimal) | 01
Term (O months) [3
[Eamings History
[Month [Monthly Interest Eamed [Current Balance,
[Mo 1 0 60500
[Mout2 o [et00s
[Month 3 o8 e1513
[Mouth 4 58 [e2025
I Moath 5 s 502
= s

images/00294.jpeg
My name is Mark
My name s Sname

images/00179.jpeg
- oI

2ls]
This statement is called from the file inchideMe php using the inchide command.

| € = & (B locathostincludelte prp

images/00170.jpeg
R |

images/00291.jpeg
Tue April 15, 2014 09:13:51
1397596431
30 days from right now: 1400188431

images/00290.jpeg
